Ardupilot2/ArduCopter/mode.h
Peter Barker b849fbbcca Copter: autoyaw: correct units returned by look_ahead_yaw
there are other methods on the autoyaw object which make it clear that they're working in cd, and others in there that work in degrees.  This method doesn't specify cd yet returns in that unit.

Change the method and state variable to store in degrees (as our naming standards suggest)
2024-04-11 10:24:58 +10:00

1984 lines
68 KiB
C++

#pragma once
#include "Copter.h"
#include <AP_Math/chirp.h>
#include <AP_ExternalControl/AP_ExternalControl_config.h> // TODO why is this needed if Copter.h includes this
class Parameters;
class ParametersG2;
class GCS_Copter;
// object shared by both Guided and Auto for takeoff.
// position controller controls vehicle but the user can control the yaw.
class _AutoTakeoff {
public:
void run();
void start(float complete_alt_cm, bool terrain_alt);
bool get_position(Vector3p& completion_pos);
bool complete; // true when takeoff is complete
private:
// altitude above-ekf-origin below which auto takeoff does not control horizontal position
bool no_nav_active;
float no_nav_alt_cm;
// auto takeoff variables
float complete_alt_cm; // completion altitude expressed in cm above ekf origin or above terrain (depending upon auto_takeoff_terrain_alt)
bool terrain_alt; // true if altitudes are above terrain
Vector3p complete_pos; // target takeoff position as offset from ekf origin in cm
};
#if AC_PAYLOAD_PLACE_ENABLED
class PayloadPlace {
public:
void run();
void start_descent();
bool verify();
enum class State : uint8_t {
FlyToLocation,
Descent_Start,
Descent,
Release,
Releasing,
Delay,
Ascent_Start,
Ascent,
Done,
};
// these are set by the Mission code:
State state = State::Descent_Start; // records state of payload place
float descent_max_cm;
private:
uint32_t descent_established_time_ms; // milliseconds
uint32_t place_start_time_ms; // milliseconds
float descent_thrust_level;
float descent_start_altitude_cm;
float descent_speed_cms;
};
#endif
class Mode {
friend class PayloadPlace;
public:
// Auto Pilot Modes enumeration
enum class Number : uint8_t {
STABILIZE = 0, // manual airframe angle with manual throttle
ACRO = 1, // manual body-frame angular rate with manual throttle
ALT_HOLD = 2, // manual airframe angle with automatic throttle
AUTO = 3, // fully automatic waypoint control using mission commands
GUIDED = 4, // fully automatic fly to coordinate or fly at velocity/direction using GCS immediate commands
LOITER = 5, // automatic horizontal acceleration with automatic throttle
RTL = 6, // automatic return to launching point
CIRCLE = 7, // automatic circular flight with automatic throttle
LAND = 9, // automatic landing with horizontal position control
DRIFT = 11, // semi-autonomous position, yaw and throttle control
SPORT = 13, // manual earth-frame angular rate control with manual throttle
FLIP = 14, // automatically flip the vehicle on the roll axis
AUTOTUNE = 15, // automatically tune the vehicle's roll and pitch gains
POSHOLD = 16, // automatic position hold with manual override, with automatic throttle
BRAKE = 17, // full-brake using inertial/GPS system, no pilot input
THROW = 18, // throw to launch mode using inertial/GPS system, no pilot input
AVOID_ADSB = 19, // automatic avoidance of obstacles in the macro scale - e.g. full-sized aircraft
GUIDED_NOGPS = 20, // guided mode but only accepts attitude and altitude
SMART_RTL = 21, // SMART_RTL returns to home by retracing its steps
FLOWHOLD = 22, // FLOWHOLD holds position with optical flow without rangefinder
FOLLOW = 23, // follow attempts to follow another vehicle or ground station
ZIGZAG = 24, // ZIGZAG mode is able to fly in a zigzag manner with predefined point A and point B
SYSTEMID = 25, // System ID mode produces automated system identification signals in the controllers
AUTOROTATE = 26, // Autonomous autorotation
AUTO_RTL = 27, // Auto RTL, this is not a true mode, AUTO will report as this mode if entered to perform a DO_LAND_START Landing sequence
TURTLE = 28, // Flip over after crash
// Mode number 127 reserved for the "drone show mode" in the Skybrush
// fork at https://github.com/skybrush-io/ardupilot
};
// constructor
Mode(void);
// do not allow copying
CLASS_NO_COPY(Mode);
friend class _AutoTakeoff;
// returns a unique number specific to this mode
virtual Number mode_number() const = 0;
// child classes should override these methods
virtual bool init(bool ignore_checks) {
return true;
}
virtual void exit() {};
virtual void run() = 0;
virtual bool requires_GPS() const = 0;
virtual bool has_manual_throttle() const = 0;
virtual bool allows_arming(AP_Arming::Method method) const = 0;
virtual bool is_autopilot() const { return false; }
virtual bool has_user_takeoff(bool must_navigate) const { return false; }
virtual bool in_guided_mode() const { return false; }
virtual bool logs_attitude() const { return false; }
virtual bool allows_save_trim() const { return false; }
virtual bool allows_autotune() const { return false; }
virtual bool allows_flip() const { return false; }
#if FRAME_CONFIG == HELI_FRAME
virtual bool allows_inverted() const { return false; };
#endif
// return a string for this flightmode
virtual const char *name() const = 0;
virtual const char *name4() const = 0;
bool do_user_takeoff(float takeoff_alt_cm, bool must_navigate);
virtual bool is_taking_off() const;
static void takeoff_stop() { takeoff.stop(); }
virtual bool is_landing() const { return false; }
// mode requires terrain to be present to be functional
virtual bool requires_terrain_failsafe() const { return false; }
// functions for reporting to GCS
virtual bool get_wp(Location &loc) const { return false; };
virtual int32_t wp_bearing() const { return 0; }
virtual uint32_t wp_distance() const { return 0; }
virtual float crosstrack_error() const { return 0.0f;}
// functions to support MAV_CMD_DO_CHANGE_SPEED
virtual bool set_speed_xy(float speed_xy_cms) {return false;}
virtual bool set_speed_up(float speed_xy_cms) {return false;}
virtual bool set_speed_down(float speed_xy_cms) {return false;}
int32_t get_alt_above_ground_cm(void);
// pilot input processing
void get_pilot_desired_lean_angles(float &roll_out_cd, float &pitch_out_cd, float angle_max_cd, float angle_limit_cd) const;
Vector2f get_pilot_desired_velocity(float vel_max) const;
float get_pilot_desired_yaw_rate(float yaw_in);
float get_pilot_desired_throttle() const;
// returns climb target_rate reduced to avoid obstacles and
// altitude fence
float get_avoidance_adjusted_climbrate(float target_rate);
const Vector3f& get_vel_desired_cms() {
// note that position control isn't used in every mode, so
// this may return bogus data:
return pos_control->get_vel_desired_cms();
}
// send output to the motors, can be overridden by subclasses
virtual void output_to_motors();
// returns true if pilot's yaw input should be used to adjust vehicle's heading
virtual bool use_pilot_yaw() const {return true; }
// pause and resume a mode
virtual bool pause() { return false; };
virtual bool resume() { return false; };
// true if weathervaning is allowed in the current mode
#if WEATHERVANE_ENABLED == ENABLED
virtual bool allows_weathervaning() const { return false; }
#endif
protected:
// helper functions
bool is_disarmed_or_landed() const;
void zero_throttle_and_relax_ac(bool spool_up = false);
void zero_throttle_and_hold_attitude();
void make_safe_ground_handling(bool force_throttle_unlimited = false);
// Return stopping point as a location with above origin alt frame
Location get_stopping_point() const;
// functions to control normal landing. pause_descent is true if vehicle should not descend
void land_run_horizontal_control();
void land_run_vertical_control(bool pause_descent = false);
void land_run_horiz_and_vert_control(bool pause_descent = false) {
land_run_horizontal_control();
land_run_vertical_control(pause_descent);
}
#if AC_PAYLOAD_PLACE_ENABLED
// payload place flight behaviour:
static PayloadPlace payload_place;
#endif
// run normal or precision landing (if enabled)
// pause_descent is true if vehicle should not descend
void land_run_normal_or_precland(bool pause_descent = false);
#if AC_PRECLAND_ENABLED
// Go towards a position commanded by prec land state machine in order to retry landing
// The passed in location is expected to be NED and in meters
void precland_retry_position(const Vector3f &retry_pos);
// Run precland statemachine. This function should be called from any mode that wants to do precision landing.
// This handles everything from prec landing, to prec landing failures, to retries and failsafe measures
void precland_run();
#endif
// return expected input throttle setting to hover:
virtual float throttle_hover() const;
// Alt_Hold based flight mode states used in Alt_Hold, Loiter, and Sport
enum AltHoldModeState {
AltHold_MotorStopped,
AltHold_Takeoff,
AltHold_Landed_Ground_Idle,
AltHold_Landed_Pre_Takeoff,
AltHold_Flying
};
AltHoldModeState get_alt_hold_state(float target_climb_rate_cms);
// convenience references to avoid code churn in conversion:
Parameters &g;
ParametersG2 &g2;
AC_WPNav *&wp_nav;
AC_Loiter *&loiter_nav;
AC_PosControl *&pos_control;
AP_InertialNav &inertial_nav;
AP_AHRS &ahrs;
AC_AttitudeControl *&attitude_control;
MOTOR_CLASS *&motors;
RC_Channel *&channel_roll;
RC_Channel *&channel_pitch;
RC_Channel *&channel_throttle;
RC_Channel *&channel_yaw;
float &G_Dt;
// note that we support two entirely different automatic takeoffs:
// "user-takeoff", which is available in modes such as ALT_HOLD
// (see has_user_takeoff method). "user-takeoff" is a simple
// reach-altitude-based-on-pilot-input-or-parameter routine.
// "auto-takeoff" is used by both Guided and Auto, and is
// basically waypoint navigation with pilot yaw permitted.
// user-takeoff support; takeoff state is shared across all mode instances
class _TakeOff {
public:
void start(float alt_cm);
void stop();
void do_pilot_takeoff(float& pilot_climb_rate);
bool triggered(float target_climb_rate) const;
bool running() const { return _running; }
private:
bool _running;
float take_off_start_alt;
float take_off_complete_alt;
};
static _TakeOff takeoff;
virtual bool do_user_takeoff_start(float takeoff_alt_cm);
static _AutoTakeoff auto_takeoff;
public:
// Navigation Yaw control
class AutoYaw {
public:
// Autopilot Yaw Mode enumeration
enum class Mode {
HOLD = 0, // hold zero yaw rate
LOOK_AT_NEXT_WP = 1, // point towards next waypoint (no pilot input accepted)
ROI = 2, // point towards a location held in roi (no pilot input accepted)
FIXED = 3, // point towards a particular angle (no pilot input accepted)
LOOK_AHEAD = 4, // point in the direction the copter is moving
RESETTOARMEDYAW = 5, // point towards heading at time motors were armed
ANGLE_RATE = 6, // turn at a specified rate from a starting angle
RATE = 7, // turn at a specified rate (held in auto_yaw_rate)
CIRCLE = 8, // use AC_Circle's provided yaw (used during Loiter-Turns commands)
PILOT_RATE = 9, // target rate from pilot stick
WEATHERVANE = 10, // yaw into wind
};
// mode(): current method of determining desired yaw:
Mode mode() const { return _mode; }
void set_mode_to_default(bool rtl);
void set_mode(Mode new_mode);
Mode default_mode(bool rtl) const;
void set_rate(float new_rate_cds);
// set_roi(...): set a "look at" location:
void set_roi(const Location &roi_location);
void set_fixed_yaw(float angle_deg,
float turn_rate_dps,
int8_t direction,
bool relative_angle);
void set_yaw_angle_rate(float yaw_angle_d, float yaw_rate_ds);
bool reached_fixed_yaw_target();
#if WEATHERVANE_ENABLED == ENABLED
void update_weathervane(const int16_t pilot_yaw_cds);
#endif
AC_AttitudeControl::HeadingCommand get_heading();
private:
// yaw_cd(): main product of AutoYaw; the heading:
float yaw_cd();
// rate_cds(): desired yaw rate in centidegrees/second:
float rate_cds();
// returns a yaw in degrees, direction of vehicle travel:
float look_ahead_yaw();
float roi_yaw() const;
// auto flight mode's yaw mode
Mode _mode = Mode::LOOK_AT_NEXT_WP;
Mode _last_mode;
// Yaw will point at this location if mode is set to Mode::ROI
Vector3f roi;
// yaw used for YAW_FIXED yaw_mode
float _fixed_yaw_offset_cd;
// Deg/s we should turn
float _fixed_yaw_slewrate_cds;
// time of the last yaw update
uint32_t _last_update_ms;
// heading when in yaw_look_ahead_yaw
float _look_ahead_yaw;
// turn rate (in cds) when auto_yaw_mode is set to AUTO_YAW_RATE
float _yaw_angle_cd;
float _yaw_rate_cds;
float _pilot_yaw_rate_cds;
};
static AutoYaw auto_yaw;
// pass-through functions to reduce code churn on conversion;
// these are candidates for moving into the Mode base
// class.
float get_pilot_desired_climb_rate(float throttle_control);
float get_non_takeoff_throttle(void);
void update_simple_mode(void);
bool set_mode(Mode::Number mode, ModeReason reason);
void set_land_complete(bool b);
GCS_Copter &gcs();
uint16_t get_pilot_speed_dn(void);
// end pass-through functions
};
#if MODE_ACRO_ENABLED == ENABLED
class ModeAcro : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::ACRO; }
enum class Trainer {
OFF = 0,
LEVELING = 1,
LIMITED = 2,
};
enum class AcroOptions {
AIR_MODE = 1 << 0,
RATE_LOOP_ONLY = 1 << 1,
};
virtual void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool init(bool ignore_checks) override;
void exit() override;
// whether an air-mode aux switch has been toggled
void air_mode_aux_changed();
bool allows_save_trim() const override { return true; }
bool allows_flip() const override { return true; }
protected:
const char *name() const override { return "ACRO"; }
const char *name4() const override { return "ACRO"; }
// get_pilot_desired_angle_rates - transform pilot's normalised roll pitch and yaw input into a desired lean angle rates
// inputs are -1 to 1 and the function returns desired angle rates in centi-degrees-per-second
void get_pilot_desired_angle_rates(float roll_in, float pitch_in, float yaw_in, float &roll_out, float &pitch_out, float &yaw_out);
float throttle_hover() const override;
private:
bool disable_air_mode_reset;
};
#endif
#if FRAME_CONFIG == HELI_FRAME
class ModeAcro_Heli : public ModeAcro {
public:
// inherit constructor
using ModeAcro::Mode;
bool init(bool ignore_checks) override;
void run() override;
void virtual_flybar( float &roll_out, float &pitch_out, float &yaw_out, float pitch_leak, float roll_leak);
protected:
private:
};
#endif
class ModeAltHold : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::ALT_HOLD; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
bool allows_autotune() const override { return true; }
bool allows_flip() const override { return true; }
protected:
const char *name() const override { return "ALT_HOLD"; }
const char *name4() const override { return "ALTH"; }
private:
};
class ModeAuto : public Mode {
public:
friend class PayloadPlace; // in case wp_run is accidentally required
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return auto_RTL? Number::AUTO_RTL : Number::AUTO; }
bool init(bool ignore_checks) override;
void exit() override;
void run() override;
bool requires_GPS() const override;
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override;
bool is_autopilot() const override { return true; }
bool in_guided_mode() const override { return _mode == SubMode::NAVGUIDED || _mode == SubMode::NAV_SCRIPT_TIME; }
// Auto modes
enum class SubMode : uint8_t {
TAKEOFF,
WP,
LAND,
RTL,
CIRCLE_MOVE_TO_EDGE,
CIRCLE,
NAVGUIDED,
LOITER,
LOITER_TO_ALT,
#if AP_MISSION_NAV_PAYLOAD_PLACE_ENABLED && AC_PAYLOAD_PLACE_ENABLED
NAV_PAYLOAD_PLACE,
#endif
NAV_SCRIPT_TIME,
NAV_ATTITUDE_TIME,
};
// set submode. returns true on success, false on failure
void set_submode(SubMode new_submode);
// pause continue in auto mode
bool pause() override;
bool resume() override;
bool paused() const;
bool loiter_start();
void rtl_start();
void takeoff_start(const Location& dest_loc);
bool wp_start(const Location& dest_loc);
void land_start();
void circle_movetoedge_start(const Location &circle_center, float radius_m, bool ccw_turn);
void circle_start();
void nav_guided_start();
bool is_landing() const override;
bool is_taking_off() const override;
bool use_pilot_yaw() const override;
bool set_speed_xy(float speed_xy_cms) override;
bool set_speed_up(float speed_up_cms) override;
bool set_speed_down(float speed_down_cms) override;
bool requires_terrain_failsafe() const override { return true; }
void payload_place_start();
// for GCS_MAVLink to call:
bool do_guided(const AP_Mission::Mission_Command& cmd);
// Go straight to landing sequence via DO_LAND_START, if succeeds pretend to be Auto RTL mode
bool jump_to_landing_sequence_auto_RTL(ModeReason reason);
// lua accessors for nav script time support
bool nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2, int16_t &arg3, int16_t &arg4);
void nav_script_time_done(uint16_t id);
AP_Mission mission{
FUNCTOR_BIND_MEMBER(&ModeAuto::start_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&ModeAuto::verify_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&ModeAuto::exit_mission, void)};
// Mission change detector
AP_Mission_ChangeDetector mis_change_detector;
// true if weathervaning is allowed in auto
#if WEATHERVANE_ENABLED == ENABLED
bool allows_weathervaning(void) const override;
#endif
protected:
const char *name() const override { return auto_RTL? "AUTO RTL" : "AUTO"; }
const char *name4() const override { return auto_RTL? "ARTL" : "AUTO"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
bool get_wp(Location &loc) const override;
private:
enum class Options : int32_t {
AllowArming = (1 << 0U),
AllowTakeOffWithoutRaisingThrottle = (1 << 1U),
IgnorePilotYaw = (1 << 2U),
AllowWeatherVaning = (1 << 7U),
};
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command(const AP_Mission::Mission_Command& cmd);
void exit_mission();
bool check_for_mission_change(); // detect external changes to mission
void takeoff_run();
void wp_run();
void land_run();
void rtl_run();
void circle_run();
void nav_guided_run();
void loiter_run();
void loiter_to_alt_run();
void nav_attitude_time_run();
Location loc_from_cmd(const AP_Mission::Mission_Command& cmd, const Location& default_loc) const;
SubMode _mode = SubMode::TAKEOFF; // controls which auto controller is run
bool shift_alt_to_current_alt(Location& target_loc) const;
void do_takeoff(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
bool set_next_wp(const AP_Mission::Mission_Command& current_cmd, const Location &default_loc);
void do_land(const AP_Mission::Mission_Command& cmd);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
void do_loiter_to_alt(const AP_Mission::Mission_Command& cmd);
void do_spline_wp(const AP_Mission::Mission_Command& cmd);
void get_spline_from_cmd(const AP_Mission::Mission_Command& cmd, const Location& default_loc, Location& dest_loc, Location& next_dest_loc, bool& next_dest_loc_is_spline);
#if AC_NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
#if PARACHUTE == ENABLED
void do_parachute(const AP_Mission::Mission_Command& cmd);
#endif
#if AP_WINCH_ENABLED
void do_winch(const AP_Mission::Mission_Command& cmd);
#endif
void do_payload_place(const AP_Mission::Mission_Command& cmd);
void do_RTL(void);
#if AP_SCRIPTING_ENABLED
void do_nav_script_time(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_attitude_time(const AP_Mission::Mission_Command& cmd);
bool verify_takeoff();
bool verify_land();
bool verify_payload_place();
bool verify_loiter_unlimited();
bool verify_loiter_time(const AP_Mission::Mission_Command& cmd);
bool verify_loiter_to_alt() const;
bool verify_RTL();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
bool verify_spline_wp(const AP_Mission::Mission_Command& cmd);
#if AC_NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
#if AP_SCRIPTING_ENABLED
bool verify_nav_script_time();
#endif
bool verify_nav_attitude_time(const AP_Mission::Mission_Command& cmd);
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
struct {
bool reached_destination_xy : 1;
bool loiter_start_done : 1;
bool reached_alt : 1;
float alt_error_cm;
int32_t alt;
} loiter_to_alt;
// Delay the next navigation command
uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands (eg land,takeoff etc.)
uint32_t nav_delay_time_start_ms;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
// Land within Auto state
enum class State {
FlyToLocation = 0,
Descending = 1
};
State state = State::FlyToLocation;
bool waiting_to_start; // true if waiting for vehicle to be armed or EKF origin before starting mission
// True if we have entered AUTO to perform a DO_LAND_START landing sequence and we should report as AUTO RTL mode
bool auto_RTL;
#if AP_SCRIPTING_ENABLED
// nav_script_time command variables
struct {
bool done; // true once lua script indicates it has completed
uint16_t id; // unique id to avoid race conditions between commands and lua scripts
uint32_t start_ms; // system time nav_script_time command was received (used for timeout)
uint8_t command; // command number provided by mission command
uint8_t timeout_s; // timeout (in seconds) provided by mission command
float arg1; // 1st argument provided by mission command
float arg2; // 2nd argument provided by mission command
int16_t arg3; // 3rd argument provided by mission command
int16_t arg4; // 4th argument provided by mission command
} nav_scripting;
#endif
// nav attitude time command variables
struct {
int16_t roll_deg; // target roll angle in degrees. provided by mission command
int8_t pitch_deg; // target pitch angle in degrees. provided by mission command
int16_t yaw_deg; // target yaw angle in degrees. provided by mission command
float climb_rate; // climb rate in m/s. provided by mission command
uint32_t start_ms; // system time that nav attitude time command was received (used for timeout)
} nav_attitude_time;
// desired speeds
struct {
float xy; // desired speed horizontally in m/s. 0 if unset
float up; // desired speed upwards in m/s. 0 if unset
float down; // desired speed downwards in m/s. 0 if unset
} desired_speed_override;
};
#if AUTOTUNE_ENABLED == ENABLED
/*
wrapper class for AC_AutoTune
*/
#if FRAME_CONFIG == HELI_FRAME
class AutoTune : public AC_AutoTune_Heli
#else
class AutoTune : public AC_AutoTune_Multi
#endif
{
public:
bool init() override;
void run() override;
protected:
bool position_ok() override;
float get_pilot_desired_climb_rate_cms(void) const override;
void get_pilot_desired_rp_yrate_cd(float &roll_cd, float &pitch_cd, float &yaw_rate_cds) override;
void init_z_limits() override;
#if HAL_LOGGING_ENABLED
void log_pids() override;
#endif
};
class ModeAutoTune : public Mode {
// ParametersG2 sets a pointer within our autotune object:
friend class ParametersG2;
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::AUTOTUNE; }
bool init(bool ignore_checks) override;
void exit() override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; }
bool is_autopilot() const override { return false; }
void save_tuning_gains();
void reset();
protected:
const char *name() const override { return "AUTOTUNE"; }
const char *name4() const override { return "ATUN"; }
private:
AutoTune autotune;
};
#endif
class ModeBrake : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::BRAKE; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return false; }
void timeout_to_loiter_ms(uint32_t timeout_ms);
protected:
const char *name() const override { return "BRAKE"; }
const char *name4() const override { return "BRAK"; }
private:
uint32_t _timeout_start;
uint32_t _timeout_ms;
};
class ModeCircle : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::CIRCLE; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "CIRCLE"; }
const char *name4() const override { return "CIRC"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
private:
// Circle
bool speed_changing = false; // true when the roll stick is being held to facilitate stopping at 0 rate
};
class ModeDrift : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::DRIFT; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "DRIFT"; }
const char *name4() const override { return "DRIF"; }
private:
float get_throttle_assist(float velz, float pilot_throttle_scaled);
};
class ModeFlip : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::FLIP; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return false; }
protected:
const char *name() const override { return "FLIP"; }
const char *name4() const override { return "FLIP"; }
private:
// Flip
Vector3f orig_attitude; // original vehicle attitude before flip
enum class FlipState : uint8_t {
Start,
Roll,
Pitch_A,
Pitch_B,
Recover,
Abandon
};
FlipState _state; // current state of flip
Mode::Number orig_control_mode; // flight mode when flip was initated
uint32_t start_time_ms; // time since flip began
int8_t roll_dir; // roll direction (-1 = roll left, 1 = roll right)
int8_t pitch_dir; // pitch direction (-1 = pitch forward, 1 = pitch back)
};
#if MODE_FLOWHOLD_ENABLED == ENABLED
/*
class to support FLOWHOLD mode, which is a position hold mode using
optical flow directly, avoiding the need for a rangefinder
*/
class ModeFlowHold : public Mode {
public:
// need a constructor for parameters
ModeFlowHold(void);
Number mode_number() const override { return Number::FLOWHOLD; }
bool init(bool ignore_checks) override;
void run(void) override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
bool allows_flip() const override { return true; }
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "FLOWHOLD"; }
const char *name4() const override { return "FHLD"; }
private:
// FlowHold states
enum FlowHoldModeState {
FlowHold_MotorStopped,
FlowHold_Takeoff,
FlowHold_Flying,
FlowHold_Landed
};
// calculate attitude from flow data
void flow_to_angle(Vector2f &bf_angle);
LowPassFilterVector2f flow_filter;
bool flowhold_init(bool ignore_checks);
void flowhold_run();
void flowhold_flow_to_angle(Vector2f &angle, bool stick_input);
void update_height_estimate(void);
// minimum assumed height
const float height_min = 0.1f;
// maximum scaling height
const float height_max = 3.0f;
AP_Float flow_max;
AC_PI_2D flow_pi_xy{0.2f, 0.3f, 3000, 5, 0.0025f};
AP_Float flow_filter_hz;
AP_Int8 flow_min_quality;
AP_Int8 brake_rate_dps;
float quality_filtered;
uint8_t log_counter;
bool limited;
Vector2f xy_I;
// accumulated INS delta velocity in north-east form since last flow update
Vector2f delta_velocity_ne;
// last flow rate in radians/sec in north-east axis
Vector2f last_flow_rate_rps;
// timestamp of last flow data
uint32_t last_flow_ms;
float last_ins_height;
float height_offset;
// are we braking after pilot input?
bool braking;
// last time there was significant stick input
uint32_t last_stick_input_ms;
};
#endif // MODE_FLOWHOLD_ENABLED
class ModeGuided : public Mode {
public:
#if AP_EXTERNAL_CONTROL_ENABLED
friend class AP_ExternalControl_Copter;
#endif
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::GUIDED; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override;
bool is_autopilot() const override { return true; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
bool in_guided_mode() const override { return true; }
bool requires_terrain_failsafe() const override { return true; }
// Sets guided's angular target submode: Using a rotation quaternion, angular velocity, and climbrate or thrust (depends on user option)
// attitude_quat: IF zero: ang_vel (angular velocity) must be provided even if all zeroes
// IF non-zero: attitude_control is performed using both the attitude quaternion and angular velocity
// ang_vel: angular velocity (rad/s)
// climb_rate_cms_or_thrust: represents either the climb_rate (cm/s) or thrust scaled from [0, 1], unitless
// use_thrust: IF true: climb_rate_cms_or_thrust represents thrust
// IF false: climb_rate_cms_or_thrust represents climb_rate (cm/s)
void set_angle(const Quaternion &attitude_quat, const Vector3f &ang_vel, float climb_rate_cms_or_thrust, bool use_thrust);
bool set_destination(const Vector3f& destination, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool terrain_alt = false);
bool set_destination(const Location& dest_loc, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool get_wp(Location &loc) const override;
void set_accel(const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true);
void set_velocity(const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true);
void set_velaccel(const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false, bool log_request = true);
bool set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
bool set_destination_posvelaccel(const Vector3f& destination, const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw = false, float yaw_cd = 0.0, bool use_yaw_rate = false, float yaw_rate_cds = 0.0, bool yaw_relative = false);
// get position, velocity and acceleration targets
const Vector3p& get_target_pos() const;
const Vector3f& get_target_vel() const;
const Vector3f& get_target_accel() const;
// returns true if GUIDED_OPTIONS param suggests SET_ATTITUDE_TARGET's "thrust" field should be interpreted as thrust instead of climb rate
bool set_attitude_target_provides_thrust() const;
bool stabilizing_pos_xy() const;
bool stabilizing_vel_xy() const;
bool use_wpnav_for_position_control() const;
void limit_clear();
void limit_init_time_and_pos();
void limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm);
bool limit_check();
bool is_taking_off() const override;
bool set_speed_xy(float speed_xy_cms) override;
bool set_speed_up(float speed_up_cms) override;
bool set_speed_down(float speed_down_cms) override;
// initialises position controller to implement take-off
// takeoff_alt_cm is interpreted as alt-above-home (in cm) or alt-above-terrain if a rangefinder is available
bool do_user_takeoff_start(float takeoff_alt_cm) override;
enum class SubMode {
TakeOff,
WP,
Pos,
PosVelAccel,
VelAccel,
Accel,
Angle,
};
SubMode submode() const { return guided_mode; }
void angle_control_start();
void angle_control_run();
// return guided mode timeout in milliseconds. Only used for velocity, acceleration, angle control, and angular rate control
uint32_t get_timeout_ms() const;
bool use_pilot_yaw() const override;
// pause continue in guided mode
bool pause() override;
bool resume() override;
// true if weathervaning is allowed in guided
#if WEATHERVANE_ENABLED == ENABLED
bool allows_weathervaning(void) const override;
#endif
protected:
const char *name() const override { return "GUIDED"; }
const char *name4() const override { return "GUID"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override;
private:
// enum for GUID_OPTIONS parameter
enum class Options : int32_t {
AllowArmingFromTX = (1U << 0),
// this bit is still available, pilot yaw was mapped to bit 2 for symmetry with auto
IgnorePilotYaw = (1U << 2),
SetAttitudeTarget_ThrustAsThrust = (1U << 3),
DoNotStabilizePositionXY = (1U << 4),
DoNotStabilizeVelocityXY = (1U << 5),
WPNavUsedForPosControl = (1U << 6),
AllowWeatherVaning = (1U << 7)
};
// wp controller
void wp_control_start();
void wp_control_run();
void pva_control_start();
void pos_control_start();
void accel_control_start();
void velaccel_control_start();
void posvelaccel_control_start();
void takeoff_run();
void pos_control_run();
void accel_control_run();
void velaccel_control_run();
void pause_control_run();
void posvelaccel_control_run();
void set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle);
// controls which controller is run (pos or vel):
SubMode guided_mode = SubMode::TakeOff;
bool send_notification; // used to send one time notification to ground station
bool takeoff_complete; // true once takeoff has completed (used to trigger retracting of landing gear)
// guided mode is paused or not
bool _paused;
};
class ModeGuidedNoGPS : public ModeGuided {
public:
// inherit constructor
using ModeGuided::Mode;
Number mode_number() const override { return Number::GUIDED_NOGPS; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "GUIDED_NOGPS"; }
const char *name4() const override { return "GNGP"; }
private:
};
class ModeLand : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::LAND; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return true; }
bool is_landing() const override { return true; };
void do_not_use_GPS();
// returns true if LAND mode is trying to control X/Y position
bool controlling_position() const { return control_position; }
void set_land_pause(bool new_value) { land_pause = new_value; }
protected:
const char *name() const override { return "LAND"; }
const char *name4() const override { return "LAND"; }
private:
void gps_run();
void nogps_run();
bool control_position; // true if we are using an external reference to control position
uint32_t land_start_time;
bool land_pause;
};
class ModeLoiter : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::LOITER; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
bool allows_autotune() const override { return true; }
#if AC_PRECLAND_ENABLED
void set_precision_loiter_enabled(bool value) { _precision_loiter_enabled = value; }
#endif
protected:
const char *name() const override { return "LOITER"; }
const char *name4() const override { return "LOIT"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override { return pos_control->crosstrack_error();}
#if AC_PRECLAND_ENABLED
bool do_precision_loiter();
void precision_loiter_xy();
#endif
private:
#if AC_PRECLAND_ENABLED
bool _precision_loiter_enabled;
bool _precision_loiter_active; // true if user has switched on prec loiter
#endif
};
class ModePosHold : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::POSHOLD; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
bool allows_autotune() const override { return true; }
protected:
const char *name() const override { return "POSHOLD"; }
const char *name4() const override { return "PHLD"; }
private:
void update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw);
float mix_controls(float mix_ratio, float first_control, float second_control);
void update_brake_angle_from_velocity(float &brake_angle, float velocity);
void init_wind_comp_estimate();
void update_wind_comp_estimate();
void get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle);
void roll_controller_to_pilot_override();
void pitch_controller_to_pilot_override();
enum class RPMode {
PILOT_OVERRIDE=0, // pilot is controlling this axis (i.e. roll or pitch)
BRAKE, // this axis is braking towards zero
BRAKE_READY_TO_LOITER, // this axis has completed braking and is ready to enter loiter mode (both modes must be this value before moving to next stage)
BRAKE_TO_LOITER, // both vehicle's axis (roll and pitch) are transitioning from braking to loiter mode (braking and loiter controls are mixed)
LOITER, // both vehicle axis are holding position
CONTROLLER_TO_PILOT_OVERRIDE // pilot has input controls on this axis and this axis is transitioning to pilot override (other axis will transition to brake if no pilot input)
};
RPMode roll_mode;
RPMode pitch_mode;
// pilot input related variables
float pilot_roll; // pilot requested roll angle (filtered to slow returns to zero)
float pilot_pitch; // pilot requested roll angle (filtered to slow returns to zero)
// braking related variables
struct {
uint8_t time_updated_roll : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
uint8_t time_updated_pitch : 1; // true once we have re-estimated the braking time. This is done once as the vehicle begins to flatten out after braking
float gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from rate)
float roll; // target roll angle during braking periods
float pitch; // target pitch angle during braking periods
int16_t timeout_roll; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
int16_t timeout_pitch; // number of cycles allowed for the braking to complete, this timeout will be updated at half-braking
float angle_max_roll; // maximum lean angle achieved during braking. Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
float angle_max_pitch; // maximum lean angle achieved during braking Used to determine when the vehicle has begun to flatten out so that we can re-estimate the braking time
int16_t to_loiter_timer; // cycles to mix brake and loiter controls in POSHOLD_TO_LOITER
} brake;
// loiter related variables
int16_t controller_to_pilot_timer_roll; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
int16_t controller_to_pilot_timer_pitch; // cycles to mix controller and pilot controls in POSHOLD_CONTROLLER_TO_PILOT
float controller_final_roll; // final roll angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
float controller_final_pitch; // final pitch angle from controller as we exit brake or loiter mode (used for mixing with pilot input)
// wind compensation related variables
Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller
float wind_comp_roll; // roll angle to compensate for wind
float wind_comp_pitch; // pitch angle to compensate for wind
uint16_t wind_comp_start_timer; // counter to delay start of wind compensation for a short time after loiter is engaged
int8_t wind_comp_timer; // counter to reduce wind comp roll/pitch lean angle calcs to 10hz
// final output
float roll; // final roll angle sent to attitude controller
float pitch; // final pitch angle sent to attitude controller
};
class ModeRTL : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::RTL; }
bool init(bool ignore_checks) override;
void run() override {
return run(true);
}
void run(bool disarm_on_land);
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return true; }
bool requires_terrain_failsafe() const override { return true; }
// for reporting to GCS
bool get_wp(Location &loc) const override;
bool use_pilot_yaw() const override;
bool set_speed_xy(float speed_xy_cms) override;
bool set_speed_up(float speed_up_cms) override;
bool set_speed_down(float speed_down_cms) override;
// RTL states
enum class SubMode : uint8_t {
STARTING,
INITIAL_CLIMB,
RETURN_HOME,
LOITER_AT_HOME,
FINAL_DESCENT,
LAND
};
SubMode state() { return _state; }
// this should probably not be exposed
bool state_complete() const { return _state_complete; }
virtual bool is_landing() const override;
void restart_without_terrain();
// enum for RTL_ALT_TYPE parameter
enum class RTLAltType : int8_t {
RTL_ALTTYPE_RELATIVE = 0,
RTL_ALTTYPE_TERRAIN = 1
};
ModeRTL::RTLAltType get_alt_type() const;
protected:
const char *name() const override { return "RTL"; }
const char *name4() const override { return "RTL "; }
// for reporting to GCS
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
void descent_start();
void descent_run();
void land_start();
void land_run(bool disarm_on_land);
void set_descent_target_alt(uint32_t alt) { rtl_path.descent_target.alt = alt; }
private:
void climb_start();
void return_start();
void climb_return_run();
void loiterathome_start();
void loiterathome_run();
void build_path();
void compute_return_target();
SubMode _state = SubMode::INITIAL_CLIMB; // records state of rtl (initial climb, returning home, etc)
bool _state_complete = false; // set to true if the current state is completed
struct {
// NEU w/ Z element alt-above-ekf-origin unless use_terrain is true in which case Z element is alt-above-terrain
Location origin_point;
Location climb_target;
Location return_target;
Location descent_target;
bool land;
} rtl_path;
// return target alt type
enum class ReturnTargetAltType {
RELATIVE = 0,
RANGEFINDER = 1,
TERRAINDATABASE = 2
};
// Loiter timer - Records how long we have been in loiter
uint32_t _loiter_start_time;
bool terrain_following_allowed;
// enum for RTL_OPTIONS parameter
enum class Options : int32_t {
// First pair of bits are still available, pilot yaw was mapped to bit 2 for symmetry with auto
IgnorePilotYaw = (1U << 2),
};
};
class ModeSmartRTL : public ModeRTL {
public:
// inherit constructor
using ModeRTL::Mode;
Number mode_number() const override { return Number::SMART_RTL; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; }
bool is_autopilot() const override { return true; }
void save_position();
void exit() override;
bool is_landing() const override;
bool use_pilot_yaw() const override;
// Safe RTL states
enum class SubMode : uint8_t {
WAIT_FOR_PATH_CLEANUP,
PATH_FOLLOW,
PRELAND_POSITION,
DESCEND,
LAND
};
protected:
const char *name() const override { return "SMARTRTL"; }
const char *name4() const override { return "SRTL"; }
// for reporting to GCS
bool get_wp(Location &loc) const override;
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override { return wp_nav->crosstrack_error();}
private:
void wait_cleanup_run();
void path_follow_run();
void pre_land_position_run();
void land();
SubMode smart_rtl_state = SubMode::PATH_FOLLOW;
// keep track of how long we have failed to get another return
// point while following our path home. If we take too long we
// may choose to land the vehicle.
uint32_t path_follow_last_pop_fail_ms;
};
class ModeSport : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::SPORT; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool has_user_takeoff(bool must_navigate) const override {
return !must_navigate;
}
protected:
const char *name() const override { return "SPORT"; }
const char *name4() const override { return "SPRT"; }
private:
};
class ModeStabilize : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::STABILIZE; }
virtual void run() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
bool allows_save_trim() const override { return true; }
bool allows_autotune() const override { return true; }
bool allows_flip() const override { return true; }
protected:
const char *name() const override { return "STABILIZE"; }
const char *name4() const override { return "STAB"; }
private:
};
#if FRAME_CONFIG == HELI_FRAME
class ModeStabilize_Heli : public ModeStabilize {
public:
// inherit constructor
using ModeStabilize::Mode;
bool init(bool ignore_checks) override;
void run() override;
bool allows_inverted() const override { return true; };
protected:
private:
};
#endif
class ModeSystemId : public Mode {
public:
ModeSystemId(void);
Number mode_number() const override { return Number::SYSTEMID; }
bool init(bool ignore_checks) override;
void run() override;
void exit() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
bool is_autopilot() const override { return false; }
bool logs_attitude() const override { return true; }
void set_magnitude(float input) { waveform_magnitude.set(input); }
static const struct AP_Param::GroupInfo var_info[];
Chirp chirp_input;
protected:
const char *name() const override { return "SYSTEMID"; }
const char *name4() const override { return "SYSI"; }
private:
void log_data() const;
enum class AxisType {
NONE = 0, // none
INPUT_ROLL = 1, // angle input roll axis is being excited
INPUT_PITCH = 2, // angle pitch axis is being excited
INPUT_YAW = 3, // angle yaw axis is being excited
RECOVER_ROLL = 4, // angle roll axis is being excited
RECOVER_PITCH = 5, // angle pitch axis is being excited
RECOVER_YAW = 6, // angle yaw axis is being excited
RATE_ROLL = 7, // rate roll axis is being excited
RATE_PITCH = 8, // rate pitch axis is being excited
RATE_YAW = 9, // rate yaw axis is being excited
MIX_ROLL = 10, // mixer roll axis is being excited
MIX_PITCH = 11, // mixer pitch axis is being excited
MIX_YAW = 12, // mixer pitch axis is being excited
MIX_THROTTLE = 13, // mixer throttle axis is being excited
};
AP_Int8 axis; // Controls which axis are being excited. Set to non-zero to display other parameters
AP_Float waveform_magnitude;// Magnitude of chirp waveform
AP_Float frequency_start; // Frequency at the start of the chirp
AP_Float frequency_stop; // Frequency at the end of the chirp
AP_Float time_fade_in; // Time to reach maximum amplitude of chirp
AP_Float time_record; // Time taken to complete the chirp waveform
AP_Float time_fade_out; // Time to reach zero amplitude after chirp finishes
bool att_bf_feedforward; // Setting of attitude_control->get_bf_feedforward
float waveform_time; // Time reference for waveform
float waveform_sample; // Current waveform sample
float waveform_freq_rads; // Instantaneous waveform frequency
float time_const_freq; // Time at constant frequency before chirp starts
int8_t log_subsample; // Subsample multiple for logging.
// System ID states
enum class SystemIDModeState {
SYSTEMID_STATE_STOPPED,
SYSTEMID_STATE_TESTING
} systemid_state;
};
class ModeThrow : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::THROW; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; };
bool is_autopilot() const override { return false; }
// Throw types
enum class ThrowType {
Upward = 0,
Drop = 1
};
enum class PreThrowMotorState {
STOPPED = 0,
RUNNING = 1,
};
protected:
const char *name() const override { return "THROW"; }
const char *name4() const override { return "THRW"; }
private:
bool throw_detected();
bool throw_position_good() const;
bool throw_height_good() const;
bool throw_attitude_good() const;
// Throw stages
enum ThrowModeStage {
Throw_Disarmed,
Throw_Detecting,
Throw_Wait_Throttle_Unlimited,
Throw_Uprighting,
Throw_HgtStabilise,
Throw_PosHold
};
ThrowModeStage stage = Throw_Disarmed;
ThrowModeStage prev_stage = Throw_Disarmed;
uint32_t last_log_ms;
bool nextmode_attempted;
uint32_t free_fall_start_ms; // system time free fall was detected
float free_fall_start_velz; // vertical velocity when free fall was detected
};
#if MODE_TURTLE_ENABLED == ENABLED
class ModeTurtle : public Mode {
public:
// inherit constructors
using Mode::Mode;
Number mode_number() const override { return Number::TURTLE; }
bool init(bool ignore_checks) override;
void run() override;
void exit() override;
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return true; }
bool allows_arming(AP_Arming::Method method) const override;
bool is_autopilot() const override { return false; }
void change_motor_direction(bool reverse);
void output_to_motors() override;
protected:
const char *name() const override { return "TURTLE"; }
const char *name4() const override { return "TRTL"; }
private:
void arm_motors();
void disarm_motors();
float motors_output;
Vector2f motors_input;
uint32_t last_throttle_warning_output_ms;
};
#endif
// modes below rely on Guided mode so must be declared at the end (instead of in alphabetical order)
class ModeAvoidADSB : public ModeGuided {
public:
// inherit constructor
using ModeGuided::Mode;
Number mode_number() const override { return Number::AVOID_ADSB; }
bool init(bool ignore_checks) override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; }
bool is_autopilot() const override { return true; }
bool set_velocity(const Vector3f& velocity_neu);
protected:
const char *name() const override { return "AVOID_ADSB"; }
const char *name4() const override { return "AVOI"; }
private:
};
#if MODE_FOLLOW_ENABLED == ENABLED
class ModeFollow : public ModeGuided {
public:
// inherit constructor
using ModeGuided::Mode;
Number mode_number() const override { return Number::FOLLOW; }
bool init(bool ignore_checks) override;
void exit() override;
void run() override;
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; }
bool is_autopilot() const override { return true; }
protected:
const char *name() const override { return "FOLLOW"; }
const char *name4() const override { return "FOLL"; }
// for reporting to GCS
bool get_wp(Location &loc) const override;
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
uint32_t last_log_ms; // system time of last time desired velocity was logging
};
#endif
class ModeZigZag : public Mode {
public:
ModeZigZag(void);
// Inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::ZIGZAG; }
enum class Destination : uint8_t {
A, // Destination A
B, // Destination B
};
enum class Direction : uint8_t {
FORWARD, // moving forward from the yaw direction
RIGHT, // moving right from the yaw direction
BACKWARD, // moving backward from the yaw direction
LEFT, // moving left from the yaw direction
} zigzag_direction;
bool init(bool ignore_checks) override;
void exit() override;
void run() override;
// auto control methods. copter flies grid pattern
void run_auto();
void suspend_auto();
void init_auto();
bool requires_GPS() const override { return true; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return true; }
bool is_autopilot() const override { return true; }
bool has_user_takeoff(bool must_navigate) const override { return true; }
// save current position as A or B. If both A and B have been saved move to the one specified
void save_or_move_to_destination(Destination ab_dest);
// return manual control to the pilot
void return_to_manual_control(bool maintain_target);
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "ZIGZAG"; }
const char *name4() const override { return "ZIGZ"; }
uint32_t wp_distance() const override;
int32_t wp_bearing() const override;
float crosstrack_error() const override;
private:
void auto_control();
void manual_control();
bool reached_destination();
bool calculate_next_dest(Destination ab_dest, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const;
void spray(bool b);
bool calculate_side_dest(Vector3f& next_dest, bool& terrain_alt) const;
void move_to_side();
Vector2f dest_A; // in NEU frame in cm relative to ekf origin
Vector2f dest_B; // in NEU frame in cm relative to ekf origin
Vector3f current_dest; // current target destination (use for resume after suspending)
bool current_terr_alt;
// parameters
AP_Int8 _auto_enabled; // top level enable/disable control
#if HAL_SPRAYER_ENABLED
AP_Int8 _spray_enabled; // auto spray enable/disable
#endif
AP_Int8 _wp_delay; // delay for zigzag waypoint
AP_Float _side_dist; // sideways distance
AP_Int8 _direction; // sideways direction
AP_Int16 _line_num; // total number of lines
enum ZigZagState {
STORING_POINTS, // storing points A and B, pilot has manual control
AUTO, // after A and B defined, pilot toggle the switch from one side to the other, vehicle flies autonomously
MANUAL_REGAIN // pilot toggle the switch to middle position, has manual control
} stage;
enum AutoState {
MANUAL, // not in ZigZag Auto
AB_MOVING, // moving from A to B or from B to A
SIDEWAYS, // moving to sideways
} auto_stage;
uint32_t reach_wp_time_ms = 0; // time since vehicle reached destination (or zero if not yet reached)
Destination ab_dest_stored; // store the current destination
bool is_auto; // enable zigzag auto feature which is automate both AB and sideways
uint16_t line_count = 0; // current line number
int16_t line_num = 0; // target line number
bool is_suspended; // true if zigzag auto is suspended
};
#if MODE_AUTOROTATE_ENABLED == ENABLED
class ModeAutorotate : public Mode {
public:
// inherit constructor
using Mode::Mode;
Number mode_number() const override { return Number::AUTOROTATE; }
bool init(bool ignore_checks) override;
void run() override;
bool is_autopilot() const override { return true; }
bool requires_GPS() const override { return false; }
bool has_manual_throttle() const override { return false; }
bool allows_arming(AP_Arming::Method method) const override { return false; };
static const struct AP_Param::GroupInfo var_info[];
protected:
const char *name() const override { return "AUTOROTATE"; }
const char *name4() const override { return "AROT"; }
private:
// --- Internal variables ---
float _initial_rpm; // Head speed recorded at initiation of flight mode (RPM)
float _target_head_speed; // The terget head main rotor head speed. Normalised by main rotor set point
float _desired_v_z; // Desired vertical
int32_t _pitch_target; // Target pitch attitude to pass to attitude controller
uint32_t _entry_time_start_ms; // Time remaining until entry phase moves on to glide phase
float _hs_decay; // The head accerleration during the entry phase
float _bail_time; // Timer for exiting the bail out phase (s)
uint32_t _bail_time_start_ms; // Time at start of bail out
float _target_climb_rate_adjust;// Target vertical acceleration used during bail out phase
float _target_pitch_adjust; // Target pitch rate used during bail out phase
enum class Autorotation_Phase {
ENTRY,
SS_GLIDE,
FLARE,
TOUCH_DOWN,
BAIL_OUT } phase_switch;
enum class Navigation_Decision {
USER_CONTROL_STABILISED,
STRAIGHT_AHEAD,
INTO_WIND,
NEAREST_RALLY} nav_pos_switch;
// --- Internal flags ---
struct controller_flags {
bool entry_initial : 1;
bool ss_glide_initial : 1;
bool flare_initial : 1;
bool touch_down_initial : 1;
bool straight_ahead_initial : 1;
bool level_initial : 1;
bool break_initial : 1;
bool bail_out_initial : 1;
bool bad_rpm : 1;
} _flags;
struct message_flags {
bool bad_rpm : 1;
} _msg_flags;
//--- Internal functions ---
void warning_message(uint8_t message_n); //Handles output messages to the terminal
};
#endif