Ardupilot2/Rover/Log.cpp

353 lines
11 KiB
C++

#include "Rover.h"
#include <AP_RangeFinder/AP_RangeFinder_Backend.h>
#if LOGGING_ENABLED == ENABLED
// Write an attitude packet
void Rover::Log_Write_Attitude()
{
float desired_pitch_cd = degrees(g2.attitude_control.get_desired_pitch()) * 100.0f;
const Vector3f targets(0.0f, desired_pitch_cd, 0.0f);
ahrs.Write_Attitude(targets);
#if AP_AHRS_NAVEKF_AVAILABLE
AP::ahrs_navekf().Log_Write();
ahrs.Write_AHRS2();
#endif
ahrs.Write_POS();
// log steering rate controller
logger.Write_PID(LOG_PIDS_MSG, g2.attitude_control.get_steering_rate_pid().get_pid_info());
logger.Write_PID(LOG_PIDA_MSG, g2.attitude_control.get_throttle_speed_pid().get_pid_info());
// log pitch control for balance bots
if (is_balancebot()) {
logger.Write_PID(LOG_PIDP_MSG, g2.attitude_control.get_pitch_to_throttle_pid().get_pid_info());
}
// log heel to sail control for sailboats
if (rover.g2.sailboat.sail_enabled()) {
logger.Write_PID(LOG_PIDR_MSG, g2.attitude_control.get_sailboat_heel_pid().get_pid_info());
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
sitl.Log_Write_SIMSTATE();
#endif
}
// Write a range finder depth message
void Rover::Log_Write_Depth()
{
// only log depth on boats with working downward facing range finders
if (!rover.is_boat() || !rangefinder.has_data_orient(ROTATION_PITCH_270)) {
return;
}
// get position
Location loc;
IGNORE_RETURN(ahrs.get_position(loc));
// check if new sensor reading has arrived
uint32_t reading_ms = rangefinder.last_reading_ms(ROTATION_PITCH_270);
if (reading_ms == rangefinder_last_reading_ms) {
return;
}
rangefinder_last_reading_ms = reading_ms;
// get temperature
float temp_C;
if (!rangefinder.get_temp(ROTATION_PITCH_270, temp_C)) {
temp_C = 0.0f;
}
// @LoggerMessage: DPTH
// @Description: Depth messages on boats with downwards facing range finder
// @Field: TimeUS: Time since system startup
// @Field: Lat: Latitude
// @Field: Lng: Longitude
// @Field: Depth: Depth as detected by the sensor
// @Field: Temp: Temperature
logger.Write("DPTH", "TimeUS,Lat,Lng,Depth,Temp",
"sDUmO", "FGG00", "QLLff",
AP_HAL::micros64(),
loc.lat,
loc.lng,
(double)(rangefinder.distance_cm_orient(ROTATION_PITCH_270) * 0.01f),
temp_C);
}
// guided mode logging
struct PACKED log_GuidedTarget {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t type;
float pos_target_x;
float pos_target_y;
float pos_target_z;
float vel_target_x;
float vel_target_y;
float vel_target_z;
};
// Write a Guided mode target
void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target)
{
struct log_GuidedTarget pkt = {
LOG_PACKET_HEADER_INIT(LOG_GUIDEDTARGET_MSG),
time_us : AP_HAL::micros64(),
type : target_type,
pos_target_x : pos_target.x,
pos_target_y : pos_target.y,
pos_target_z : pos_target.z,
vel_target_x : vel_target.x,
vel_target_y : vel_target.y,
vel_target_z : vel_target.z
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Nav_Tuning {
LOG_PACKET_HEADER;
uint64_t time_us;
float wp_distance;
float wp_bearing;
float nav_bearing;
uint16_t yaw;
float xtrack_error;
};
// Write a navigation tuning packet
void Rover::Log_Write_Nav_Tuning()
{
struct log_Nav_Tuning pkt = {
LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG),
time_us : AP_HAL::micros64(),
wp_distance : control_mode->get_distance_to_destination(),
wp_bearing : control_mode->wp_bearing(),
nav_bearing : control_mode->nav_bearing(),
yaw : (uint16_t)ahrs.yaw_sensor,
xtrack_error : control_mode->crosstrack_error()
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
void Rover::Log_Write_Sail()
{
// only log sail if present
if (!rover.g2.sailboat.sail_enabled()) {
return;
}
float wind_dir_tack = logger.quiet_nanf();
uint8_t current_tack = 0;
if (rover.g2.windvane.enabled()) {
wind_dir_tack = degrees(g2.windvane.get_tack_threshold_wind_dir_rad());
current_tack = uint8_t(g2.windvane.get_current_tack());
}
// @LoggerMessage: SAIL
// @Description: Sailboat information
// @Field: TimeUS: Time since system startup
// @Field: Tack: Current tack, 0 = port, 1 = starboard
// @Field: TackThr: Apparent wind angle used for tack threshold
// @Field: MainOut: Normalized mainsail output
// @Field: WingOut: Normalized wingsail output
// @Field: MastRotOut: Normalized direct-rotation mast output
// @Field: VMG: Velocity made good (speed at which vehicle is making progress directly towards destination)
logger.Write("SAIL", "TimeUS,Tack,TackThr,MainOut,WingOut,MastRotOut,VMG",
"s-d%%%n", "F000000", "QBfffff",
AP_HAL::micros64(),
current_tack,
(double)wind_dir_tack,
(double)g2.motors.get_mainsail(),
(double)g2.motors.get_wingsail(),
(double)g2.motors.get_mast_rotation(),
(double)g2.sailboat.get_VMG());
}
struct PACKED log_Steering {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t steering_in;
float steering_out;
float desired_lat_accel;
float lat_accel;
float desired_turn_rate;
float turn_rate;
};
struct PACKED log_Startup {
LOG_PACKET_HEADER;
uint64_t time_us;
uint8_t startup_type;
uint16_t command_total;
};
void Rover::Log_Write_Startup(uint8_t type)
{
struct log_Startup pkt = {
LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG),
time_us : AP_HAL::micros64(),
startup_type : type,
command_total : mode_auto.mission.num_commands()
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
// Write a steering packet
void Rover::Log_Write_Steering()
{
float lat_accel = logger.quiet_nanf();
g2.attitude_control.get_lat_accel(lat_accel);
struct log_Steering pkt = {
LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG),
time_us : AP_HAL::micros64(),
steering_in : channel_steer->get_control_in(),
steering_out : g2.motors.get_steering(),
desired_lat_accel : control_mode->get_desired_lat_accel(),
lat_accel : lat_accel,
desired_turn_rate : degrees(g2.attitude_control.get_desired_turn_rate()),
turn_rate : degrees(ahrs.get_yaw_rate_earth())
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
struct PACKED log_Throttle {
LOG_PACKET_HEADER;
uint64_t time_us;
int16_t throttle_in;
float throttle_out;
float desired_speed;
float speed;
float accel_y;
};
// Write a throttle control packet
void Rover::Log_Write_Throttle()
{
const Vector3f accel = ins.get_accel();
float speed = logger.quiet_nanf();
g2.attitude_control.get_forward_speed(speed);
struct log_Throttle pkt = {
LOG_PACKET_HEADER_INIT(LOG_THR_MSG),
time_us : AP_HAL::micros64(),
throttle_in : channel_throttle->get_control_in(),
throttle_out : g2.motors.get_throttle(),
desired_speed : g2.attitude_control.get_desired_speed(),
speed : speed,
accel_y : accel.y
};
logger.WriteBlock(&pkt, sizeof(pkt));
}
void Rover::Log_Write_RC(void)
{
logger.Write_RCIN();
logger.Write_RCOUT();
if (rssi.enabled()) {
logger.Write_RSSI();
}
}
void Rover::Log_Write_Vehicle_Startup_Messages()
{
// only 200(?) bytes are guaranteed by AP_Logger
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
logger.Write_Mode(control_mode->mode_number(), control_mode_reason);
ahrs.Log_Write_Home_And_Origin();
gps.Write_AP_Logger_Log_Startup_messages();
}
// type and unit information can be found in
// libraries/AP_Logger/Logstructure.h; search for "log_Units" for
// units and "Format characters" for field type information
const LogStructure Rover::log_structure[] = {
LOG_COMMON_STRUCTURES,
// @LoggerMessage: STRT
// @Description: Startup messages
// @Field: TimeUS: Time since system startup
// @Field: SType: Type of startup
// @Field: CTot: Total number of commands in the mission
{ LOG_STARTUP_MSG, sizeof(log_Startup),
"STRT", "QBH", "TimeUS,SType,CTot", "s--", "F--" },
// @LoggerMessage: THR
// @Description: Throttle related messages
// @Field: TimeUS: Time since system startup
// @Field: ThrIn: Throttle Input
// @Field: ThrOut: Throttle Output
// @Field: DesSpeed: Desired speed
// @Field: Speed: Actual speed
// @Field: AccY: Vehicle's acceleration in Y-Axis
{ LOG_THR_MSG, sizeof(log_Throttle),
"THR", "Qhffff", "TimeUS,ThrIn,ThrOut,DesSpeed,Speed,AccY", "s--nno", "F--000" },
// @LoggerMessage: NTUN
// @Description: Navigation Tuning information - e.g. vehicle destination
// @URL: http://ardupilot.org/rover/docs/navigation.html
// @Field: TimeUS: Time since system startup
// @Field: WpDist: distance to the current navigation waypoint
// @Field: WpBrg: bearing to the current navigation waypoint
// @Field: DesYaw: the vehicle's desired heading
// @Field: Yaw: the vehicle's current heading
// @Field: XTrack: the vehicle's current distance from the current travel segment
{ LOG_NTUN_MSG, sizeof(log_Nav_Tuning),
"NTUN", "QfffHf", "TimeUS,WpDist,WpBrg,DesYaw,Yaw,XTrack", "smhhdm", "F000B0" },
// @LoggerMessage: STER
// @Description: Steering related messages
// @Field: TimeUS: Time since system startup
// @Field: SteerIn: Steering input
// @Field: SteerOut: Normalized steering output
// @Field: DesLatAcc: Desired lateral acceleration
// @Field: LatAcc: Actual lateral acceleration
// @Field: DesTurnRate: Desired turn rate
// @Field: TurnRate: Actual turn rate
{ LOG_STEERING_MSG, sizeof(log_Steering),
"STER", "Qhfffff", "TimeUS,SteerIn,SteerOut,DesLatAcc,LatAcc,DesTurnRate,TurnRate", "s--ookk", "F--0000" },
// @LoggerMessage: GUID
// @Description: Guided mode target information
// @Field: TimeUS: Time since system startup
// @Field: Type: Type of guided mode
// @Field: pX: Target position, X-Axis
// @Field: pY: Target position, Y-Axis
// @Field: pZ: Target position, Z-Axis
// @Field: vX: Target velocity, X-Axis
// @Field: vY: Target velocity, Y-Axis
// @Field: vZ: Target velocity, Z-Axis
{ LOG_GUIDEDTARGET_MSG, sizeof(log_GuidedTarget),
"GUID", "QBffffff", "TimeUS,Type,pX,pY,pZ,vX,vY,vZ", "s-mmmnnn", "F-000000" },
};
void Rover::log_init(void)
{
logger.Init(log_structure, ARRAY_SIZE(log_structure));
}
#else // LOGGING_ENABLED
// dummy functions
void Rover::Log_Write_Attitude() {}
void Rover::Log_Write_Depth() {}
void Rover::Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target) {}
void Rover::Log_Write_Nav_Tuning() {}
void Rover::Log_Write_Sail() {}
void Rover::Log_Write_Startup(uint8_t type) {}
void Rover::Log_Write_Throttle() {}
void Rover::Log_Write_RC(void) {}
void Rover::Log_Write_Steering() {}
void Rover::Log_Write_Vehicle_Startup_Messages() {}
#endif // LOGGING_ENABLED