Ardupilot2/libraries/AP_HAL_SITL/sitl_gps.cpp
2021-06-24 21:34:30 +10:00

1395 lines
43 KiB
C++

/*
SITL handling
This simulates a GPS on a serial port
Andrew Tridgell November 2011
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH)
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include <AP_Math/AP_Math.h>
#include <SITL/SITL.h>
#include "Scheduler.h"
#include "UARTDriver.h"
#include <AP_GPS/AP_GPS.h>
#include <AP_GPS/AP_GPS_UBLOX.h>
#include <AP_Common/NMEA.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <time.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <errno.h>
#pragma GCC diagnostic ignored "-Wunused-result"
using namespace HALSITL;
extern const AP_HAL::HAL& hal;
// state of GPS emulation
static struct gps_state {
/* pipe emulating UBLOX GPS serial stream */
int gps_fd, client_fd, ext_fifo_fd;
uint32_t last_update; // milliseconds
uint8_t next_index;
uint8_t delay;
} gps_state[2];
/*
hook for reading from the GPS pipe
*/
ssize_t SITL_State::gps_read(int fd, void *buf, size_t count)
{
#ifdef FIONREAD
// use FIONREAD to get exact value if possible
int num_ready;
while (ioctl(fd, FIONREAD, &num_ready) == 0 && num_ready > 3000) {
// the pipe is filling up - drain it
uint8_t tmp[128];
if (read(fd, tmp, sizeof(tmp)) != sizeof(tmp)) {
break;
}
}
#endif
return read(fd, buf, count);
}
/*
setup GPS input pipe
*/
int SITL_State::gps_pipe(uint8_t idx)
{
int fd[2];
if (_gps_fifo[idx] == nullptr) {
UNUSED_RESULT(asprintf(&_gps_fifo[idx], "/tmp/gps_fifo%d", (int)(ARRAY_SIZE(_gps_fifo)*_instance + idx)));
}
if (gps_state[idx].client_fd != 0) {
return gps_state[idx].client_fd;
}
pipe(fd);
if (mkfifo(_gps_fifo[idx], 0666) < 0) {
printf("MKFIFO failed with %s\n", strerror(errno));
}
gps_state[idx].gps_fd = fd[1];
gps_state[idx].client_fd = fd[0];
gps_state[idx].last_update = AP_HAL::millis();
fcntl(fd[0], F_SETFD, FD_CLOEXEC);
fcntl(fd[1], F_SETFD, FD_CLOEXEC);
HALSITL::UARTDriver::_set_nonblocking(gps_state[idx].gps_fd);
HALSITL::UARTDriver::_set_nonblocking(fd[0]);
return gps_state[idx].client_fd;
}
/*
write some bytes from the simulated GPS
*/
void SITL_State::_gps_write(const uint8_t *p, uint16_t size, uint8_t instance)
{
if (instance == 1 && _sitl->gps_disable[instance]) {
return;
}
if (_gps_fifo[instance] == nullptr) {
printf("GPS FIFO path not set\n");
return;
}
// also write to external fifo
int fd = open(_gps_fifo[instance], O_WRONLY | O_NONBLOCK);
if (fd >= 0) {
write(fd, p, size);
close(fd);
}
while (size--) {
if (_sitl->gps_byteloss[instance] > 0.0f) {
float r = ((((unsigned)random()) % 1000000)) / 1.0e4;
if (r < _sitl->gps_byteloss[instance]) {
// lose the byte
p++;
continue;
}
}
if (gps_state[instance].gps_fd != 0) {
write(gps_state[instance].gps_fd, p, 1);
}
p++;
}
}
/*
get timeval using simulation time
*/
static void simulation_timeval(struct timeval *tv)
{
uint64_t now = AP_HAL::micros64();
static uint64_t first_usec;
static struct timeval first_tv;
if (first_usec == 0) {
first_usec = now;
first_tv.tv_sec = AP::sitl()->start_time_UTC;
}
*tv = first_tv;
tv->tv_sec += now / 1000000ULL;
uint64_t new_usec = tv->tv_usec + (now % 1000000ULL);
tv->tv_sec += new_usec / 1000000ULL;
tv->tv_usec = new_usec % 1000000ULL;
}
/*
send a UBLOX GPS message
*/
void SITL_State::_gps_send_ubx(uint8_t msgid, uint8_t *buf, uint16_t size, uint8_t instance)
{
const uint8_t PREAMBLE1 = 0xb5;
const uint8_t PREAMBLE2 = 0x62;
const uint8_t CLASS_NAV = 0x1;
uint8_t hdr[6], chk[2];
hdr[0] = PREAMBLE1;
hdr[1] = PREAMBLE2;
hdr[2] = CLASS_NAV;
hdr[3] = msgid;
hdr[4] = size & 0xFF;
hdr[5] = size >> 8;
chk[0] = chk[1] = hdr[2];
chk[1] += (chk[0] += hdr[3]);
chk[1] += (chk[0] += hdr[4]);
chk[1] += (chk[0] += hdr[5]);
for (uint16_t i=0; i<size; i++) {
chk[1] += (chk[0] += buf[i]);
}
_gps_write(hdr, sizeof(hdr), instance);
_gps_write(buf, size, instance);
_gps_write(chk, sizeof(chk), instance);
}
/*
return GPS time of week in milliseconds
*/
static void gps_time(uint16_t *time_week, uint32_t *time_week_ms)
{
struct timeval tv;
simulation_timeval(&tv);
const uint32_t epoch = 86400*(10*365 + (1980-1969)/4 + 1 + 6 - 2) - (GPS_LEAPSECONDS_MILLIS / 1000ULL);
uint32_t epoch_seconds = tv.tv_sec - epoch;
*time_week = epoch_seconds / AP_SEC_PER_WEEK;
uint32_t t_ms = tv.tv_usec / 1000;
// round time to nearest 200ms
*time_week_ms = (epoch_seconds % AP_SEC_PER_WEEK) * AP_MSEC_PER_SEC + ((t_ms/200) * 200);
}
/*
send a new set of GPS UBLOX packets
*/
void SITL_State::_update_gps_ubx(const struct gps_data *d, uint8_t instance)
{
struct PACKED ubx_nav_posllh {
uint32_t time; // GPS msToW
int32_t longitude;
int32_t latitude;
int32_t altitude_ellipsoid;
int32_t altitude_msl;
uint32_t horizontal_accuracy;
uint32_t vertical_accuracy;
} pos {};
struct PACKED ubx_nav_status {
uint32_t time; // GPS msToW
uint8_t fix_type;
uint8_t fix_status;
uint8_t differential_status;
uint8_t res;
uint32_t time_to_first_fix;
uint32_t uptime; // milliseconds
} status {};
struct PACKED ubx_nav_velned {
uint32_t time; // GPS msToW
int32_t ned_north;
int32_t ned_east;
int32_t ned_down;
uint32_t speed_3d;
uint32_t speed_2d;
int32_t heading_2d;
uint32_t speed_accuracy;
uint32_t heading_accuracy;
} velned {};
struct PACKED ubx_nav_solution {
uint32_t time;
int32_t time_nsec;
int16_t week;
uint8_t fix_type;
uint8_t fix_status;
int32_t ecef_x;
int32_t ecef_y;
int32_t ecef_z;
uint32_t position_accuracy_3d;
int32_t ecef_x_velocity;
int32_t ecef_y_velocity;
int32_t ecef_z_velocity;
uint32_t speed_accuracy;
uint16_t position_DOP;
uint8_t res;
uint8_t satellites;
uint32_t res2;
} sol {};
struct PACKED ubx_nav_dop {
uint32_t time; // GPS msToW
uint16_t gDOP;
uint16_t pDOP;
uint16_t tDOP;
uint16_t vDOP;
uint16_t hDOP;
uint16_t nDOP;
uint16_t eDOP;
} dop {};
struct PACKED ubx_nav_pvt {
uint32_t itow;
uint16_t year;
uint8_t month, day, hour, min, sec;
uint8_t valid;
uint32_t t_acc;
int32_t nano;
uint8_t fix_type;
uint8_t flags;
uint8_t flags2;
uint8_t num_sv;
int32_t lon, lat;
int32_t height, h_msl;
uint32_t h_acc, v_acc;
int32_t velN, velE, velD, gspeed;
int32_t head_mot;
uint32_t s_acc;
uint32_t head_acc;
uint16_t p_dop;
uint8_t reserved1[6];
uint32_t headVeh;
uint8_t reserved2[4];
} pvt {};
const uint8_t SV_COUNT = 10;
struct PACKED ubx_nav_svinfo {
uint32_t itow;
uint8_t numCh;
uint8_t globalFlags;
uint8_t reserved1[2];
// repeated block
struct PACKED svinfo_sv {
uint8_t chn;
uint8_t svid;
uint8_t flags;
uint8_t quality;
uint8_t cno;
int8_t elev;
int16_t azim;
int32_t prRes;
} sv[SV_COUNT];
} svinfo {};
enum RELPOSNED {
gnssFixOK = 1U << 0,
diffSoln = 1U << 1,
relPosValid = 1U << 2,
carrSolnFloat = 1U << 3,
carrSolnFixed = 1U << 4,
isMoving = 1U << 5,
refPosMiss = 1U << 6,
refObsMiss = 1U << 7,
relPosHeadingValid = 1U << 8,
relPosNormalized = 1U << 9
};
struct PACKED ubx_nav_relposned {
uint8_t version;
uint8_t reserved1;
uint16_t refStationId;
uint32_t iTOW;
int32_t relPosN;
int32_t relPosE;
int32_t relPosD;
int32_t relPosLength;
int32_t relPosHeading;
uint8_t reserved2[4];
int8_t relPosHPN;
int8_t relPosHPE;
int8_t relPosHPD;
int8_t relPosHPLength;
uint32_t accN;
uint32_t accE;
uint32_t accD;
uint32_t accLength;
uint32_t accHeading;
uint8_t reserved3[4];
uint32_t flags;
} relposned {};
const uint8_t MSG_POSLLH = 0x2;
const uint8_t MSG_STATUS = 0x3;
const uint8_t MSG_DOP = 0x4;
const uint8_t MSG_VELNED = 0x12;
const uint8_t MSG_SOL = 0x6;
const uint8_t MSG_PVT = 0x7;
const uint8_t MSG_SVINFO = 0x30;
const uint8_t MSG_RELPOSNED = 0x3c;
static uint32_t _next_nav_sv_info_time = 0;
uint16_t time_week;
uint32_t time_week_ms;
gps_time(&time_week, &time_week_ms);
pos.time = time_week_ms;
pos.longitude = d->longitude * 1.0e7;
pos.latitude = d->latitude * 1.0e7;
pos.altitude_ellipsoid = d->altitude * 1000.0f;
pos.altitude_msl = d->altitude * 1000.0f;
pos.horizontal_accuracy = _sitl->gps_accuracy[instance]*1000;
pos.vertical_accuracy = _sitl->gps_accuracy[instance]*1000;
status.time = time_week_ms;
status.fix_type = d->have_lock?3:0;
status.fix_status = d->have_lock?1:0;
status.differential_status = 0;
status.res = 0;
status.time_to_first_fix = 0;
status.uptime = AP_HAL::millis();
velned.time = time_week_ms;
velned.ned_north = 100.0f * d->speedN;
velned.ned_east = 100.0f * d->speedE;
velned.ned_down = 100.0f * d->speedD;
velned.speed_2d = norm(d->speedN, d->speedE) * 100;
velned.speed_3d = norm(d->speedN, d->speedE, d->speedD) * 100;
velned.heading_2d = ToDeg(atan2f(d->speedE, d->speedN)) * 100000.0f;
if (velned.heading_2d < 0.0f) {
velned.heading_2d += 360.0f * 100000.0f;
}
velned.speed_accuracy = 40;
velned.heading_accuracy = 4;
memset(&sol, 0, sizeof(sol));
sol.fix_type = d->have_lock?3:0;
sol.fix_status = 221;
sol.satellites = d->have_lock?_sitl->gps_numsats[instance]:3;
sol.time = time_week_ms;
sol.week = time_week;
dop.time = time_week_ms;
dop.gDOP = 65535;
dop.pDOP = 65535;
dop.tDOP = 65535;
dop.vDOP = 200;
dop.hDOP = 121;
dop.nDOP = 65535;
dop.eDOP = 65535;
pvt.itow = time_week_ms;
pvt.year = 0;
pvt.month = 0;
pvt.day = 0;
pvt.hour = 0;
pvt.min = 0;
pvt.sec = 0;
pvt.valid = 0; // invalid utc date
pvt.t_acc = 0;
pvt.nano = 0;
pvt.fix_type = d->have_lock? 0x3 : 0;
pvt.flags = 0b10000011; // carrsoln=fixed, psm = na, diffsoln and fixok
pvt.flags2 =0;
pvt.num_sv = d->have_lock?_sitl->gps_numsats[instance]:3;
pvt.lon = d->longitude * 1.0e7;
pvt.lat = d->latitude * 1.0e7;
pvt.height = d->altitude * 1000.0f;
pvt.h_msl = d->altitude * 1000.0f;
pvt.h_acc = _sitl->gps_accuracy[instance] * 1000;
pvt.v_acc = _sitl->gps_accuracy[instance] * 1000;
pvt.velN = 1000.0f * d->speedN;
pvt.velE = 1000.0f * d->speedE;
pvt.velD = 1000.0f * d->speedD;
pvt.gspeed = norm(d->speedN, d->speedE) * 1000;
pvt.head_mot = ToDeg(atan2f(d->speedE, d->speedN)) * 1.0e5;
pvt.s_acc = 40;
pvt.head_acc = 38 * 1.0e5;
pvt.p_dop = 65535;
memset(pvt.reserved1, '\0', ARRAY_SIZE(pvt.reserved1));
pvt.headVeh = 0;
memset(pvt.reserved2, '\0', ARRAY_SIZE(pvt.reserved2));
if (_sitl->gps_hdg_enabled[instance] > SITL::SITL::GPS_HEADING_NONE) {
const Vector3f ant1_pos = _sitl->gps_pos_offset[instance^1].get();
const Vector3f ant2_pos = _sitl->gps_pos_offset[instance].get();
Vector3f rel_antenna_pos = ant2_pos - ant1_pos;
Matrix3f rot;
// project attitude back using gyros to get antenna orientation at time of GPS sample
Vector3f gyro(radians(_sitl->state.rollRate),
radians(_sitl->state.pitchRate),
radians(_sitl->state.yawRate));
rot.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(d->yaw));
const float lag = (1.0/_sitl->gps_hertz[instance]) * gps_state[instance].delay;
rot.rotate(gyro * (-lag));
rel_antenna_pos = rot * rel_antenna_pos;
relposned.version = 1;
relposned.iTOW = time_week_ms;
relposned.relPosN = rel_antenna_pos.x * 100;
relposned.relPosE = rel_antenna_pos.y * 100;
relposned.relPosD = rel_antenna_pos.z * 100;
relposned.relPosLength = rel_antenna_pos.length() * 100;
relposned.relPosHeading = degrees(Vector2f(rel_antenna_pos.x, rel_antenna_pos.y).angle()) * 1.0e5;
relposned.flags = gnssFixOK | diffSoln | carrSolnFixed | isMoving | relPosValid | relPosHeadingValid;
}
_gps_send_ubx(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos), instance);
_gps_send_ubx(MSG_STATUS, (uint8_t*)&status, sizeof(status), instance);
_gps_send_ubx(MSG_VELNED, (uint8_t*)&velned, sizeof(velned), instance);
_gps_send_ubx(MSG_SOL, (uint8_t*)&sol, sizeof(sol), instance);
_gps_send_ubx(MSG_DOP, (uint8_t*)&dop, sizeof(dop), instance);
_gps_send_ubx(MSG_PVT, (uint8_t*)&pvt, sizeof(pvt), instance);
if (_sitl->gps_hdg_enabled[instance] > SITL::SITL::GPS_HEADING_NONE) {
_gps_send_ubx(MSG_RELPOSNED, (uint8_t*)&relposned, sizeof(relposned), instance);
}
if (time_week_ms > _next_nav_sv_info_time) {
svinfo.itow = time_week_ms;
svinfo.numCh = 32;
svinfo.globalFlags = 4; // u-blox 8/M8
// fill in the SV's with some data even though firmware does not currently use it
// note that this is not using num_sats as we aren't dynamically creating this to match
for (uint8_t i = 0; i < SV_COUNT; i++) {
svinfo.sv[i].chn = i;
svinfo.sv[i].svid = i;
svinfo.sv[i].flags = (i < _sitl->gps_numsats[instance]) ? 0x7 : 0x6; // sv used, diff correction data, orbit information
svinfo.sv[i].quality = 7; // code and carrier lock and time synchronized
svinfo.sv[i].cno = MAX(20, 30 - i);
svinfo.sv[i].elev = MAX(30, 90 - i);
svinfo.sv[i].azim = i;
// not bothering to fill in prRes
}
_gps_send_ubx(MSG_SVINFO, (uint8_t*)&svinfo, sizeof(svinfo), instance);
_next_nav_sv_info_time = time_week_ms + 10000; // 10 second delay
}
}
/*
MTK type simple checksum
*/
static void mtk_checksum(const uint8_t *data, uint8_t n, uint8_t *ck_a, uint8_t *ck_b)
{
*ck_a = *ck_b = 0;
while (n--) {
*ck_a += *data++;
*ck_b += *ck_a;
}
}
/*
send a new GPS MTK packet
*/
void SITL_State::_update_gps_mtk(const struct gps_data *d, uint8_t instance)
{
struct PACKED mtk_msg {
uint8_t preamble1;
uint8_t preamble2;
uint8_t msg_class;
uint8_t msg_id;
int32_t latitude;
int32_t longitude;
int32_t altitude;
int32_t ground_speed;
int32_t ground_course;
uint8_t satellites;
uint8_t fix_type;
uint32_t utc_time;
uint8_t ck_a;
uint8_t ck_b;
} p;
p.preamble1 = 0xb5;
p.preamble2 = 0x62;
p.msg_class = 1;
p.msg_id = 5;
p.latitude = htonl(d->latitude * 1.0e6);
p.longitude = htonl(d->longitude * 1.0e6);
p.altitude = htonl(d->altitude * 100);
p.ground_speed = htonl(norm(d->speedN, d->speedE) * 100);
p.ground_course = htonl(ToDeg(atan2f(d->speedE, d->speedN)) * 1000000.0f);
if (p.ground_course < 0.0f) {
p.ground_course += 360.0f * 1000000.0f;
}
p.satellites = d->have_lock?_sitl->gps_numsats[instance]:3;
p.fix_type = d->have_lock?3:1;
// the spec is not very clear, but the time field seems to be
// milliseconds since the start of the day in UTC time,
// done in powers of 100.
// The date is powers of 100 as well, but in days since 1/1/2000
struct tm tm;
struct timeval tv;
simulation_timeval(&tv);
tm = *gmtime(&tv.tv_sec);
uint32_t hsec = (tv.tv_usec / (10000*20)) * 20; // always multiple of 20
p.utc_time = htonl(hsec + tm.tm_sec*100 + tm.tm_min*100*100 + tm.tm_hour*100*100*100);
mtk_checksum(&p.msg_class, sizeof(p)-4, &p.ck_a, &p.ck_b);
_gps_write((uint8_t*)&p, sizeof(p), instance);
}
/*
send a new GPS MTK 1.6 packet
*/
void SITL_State::_update_gps_mtk16(const struct gps_data *d, uint8_t instance)
{
struct PACKED mtk_msg {
uint8_t preamble1;
uint8_t preamble2;
uint8_t size;
int32_t latitude;
int32_t longitude;
int32_t altitude;
int32_t ground_speed;
int32_t ground_course;
uint8_t satellites;
uint8_t fix_type;
uint32_t utc_date;
uint32_t utc_time;
uint16_t hdop;
uint8_t ck_a;
uint8_t ck_b;
} p;
p.preamble1 = 0xd0;
p.preamble2 = 0xdd;
p.size = sizeof(p) - 5;
p.latitude = d->latitude * 1.0e6;
p.longitude = d->longitude * 1.0e6;
p.altitude = d->altitude * 100;
p.ground_speed = norm(d->speedN, d->speedE) * 100;
p.ground_course = ToDeg(atan2f(d->speedE, d->speedN)) * 100.0f;
if (p.ground_course < 0.0f) {
p.ground_course += 360.0f * 100.0f;
}
p.satellites = d->have_lock?_sitl->gps_numsats[instance]:3;
p.fix_type = d->have_lock?3:1;
// the spec is not very clear, but the time field seems to be
// milliseconds since the start of the day in UTC time,
// done in powers of 100.
// The date is powers of 100 as well, but in days since 1/1/2000
struct tm tm;
struct timeval tv;
simulation_timeval(&tv);
tm = *gmtime(&tv.tv_sec);
uint32_t millisec = (tv.tv_usec / (1000*200)) * 200; // always multiple of 200
p.utc_date = (tm.tm_year-100) + ((tm.tm_mon+1)*100) + (tm.tm_mday*100*100);
p.utc_time = millisec + tm.tm_sec*1000 + tm.tm_min*1000*100 + tm.tm_hour*1000*100*100;
p.hdop = 115;
mtk_checksum(&p.size, sizeof(p)-4, &p.ck_a, &p.ck_b);
_gps_write((uint8_t*)&p, sizeof(p), instance);
}
/*
send a new GPS MTK 1.9 packet
*/
void SITL_State::_update_gps_mtk19(const struct gps_data *d, uint8_t instance)
{
struct PACKED mtk_msg {
uint8_t preamble1;
uint8_t preamble2;
uint8_t size;
int32_t latitude;
int32_t longitude;
int32_t altitude;
int32_t ground_speed;
int32_t ground_course;
uint8_t satellites;
uint8_t fix_type;
uint32_t utc_date;
uint32_t utc_time;
uint16_t hdop;
uint8_t ck_a;
uint8_t ck_b;
} p;
p.preamble1 = 0xd1;
p.preamble2 = 0xdd;
p.size = sizeof(p) - 5;
p.latitude = d->latitude * 1.0e7;
p.longitude = d->longitude * 1.0e7;
p.altitude = d->altitude * 100;
p.ground_speed = norm(d->speedN, d->speedE) * 100;
p.ground_course = ToDeg(atan2f(d->speedE, d->speedN)) * 100.0f;
if (p.ground_course < 0.0f) {
p.ground_course += 360.0f * 100.0f;
}
p.satellites = d->have_lock?_sitl->gps_numsats[instance]:3;
p.fix_type = d->have_lock?3:1;
// the spec is not very clear, but the time field seems to be
// milliseconds since the start of the day in UTC time,
// done in powers of 100.
// The date is powers of 100 as well, but in days since 1/1/2000
struct tm tm;
struct timeval tv;
simulation_timeval(&tv);
tm = *gmtime(&tv.tv_sec);
uint32_t millisec = (tv.tv_usec / (1000*200)) * 200; // always multiple of 200
p.utc_date = (tm.tm_year-100) + ((tm.tm_mon+1)*100) + (tm.tm_mday*100*100);
p.utc_time = millisec + tm.tm_sec*1000 + tm.tm_min*1000*100 + tm.tm_hour*1000*100*100;
p.hdop = 115;
mtk_checksum(&p.size, sizeof(p)-4, &p.ck_a, &p.ck_b);
_gps_write((uint8_t*)&p, sizeof(p), instance);
}
/*
formatted print of NMEA message, with checksum appended
*/
void SITL_State::_gps_nmea_printf(uint8_t instance, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
char *s = nmea_vaprintf(fmt, ap);
va_end(ap);
if (s != nullptr) {
_gps_write((const uint8_t*)s, strlen(s), instance);
free(s);
}
}
/*
send a new GPS NMEA packet
*/
void SITL_State::_update_gps_nmea(const struct gps_data *d, uint8_t instance)
{
struct timeval tv;
struct tm *tm;
char tstring[20];
char dstring[20];
char lat_string[20];
char lng_string[20];
simulation_timeval(&tv);
tm = gmtime(&tv.tv_sec);
// format time string
snprintf(tstring, sizeof(tstring), "%02u%02u%06.3f", tm->tm_hour, tm->tm_min, tm->tm_sec + tv.tv_usec*1.0e-6);
// format date string
snprintf(dstring, sizeof(dstring), "%02u%02u%02u", tm->tm_mday, tm->tm_mon+1, tm->tm_year % 100);
// format latitude
double deg = fabs(d->latitude);
snprintf(lat_string, sizeof(lat_string), "%02u%08.5f,%c",
(unsigned)deg,
(deg - int(deg))*60,
d->latitude<0?'S':'N');
// format longitude
deg = fabs(d->longitude);
snprintf(lng_string, sizeof(lng_string), "%03u%08.5f,%c",
(unsigned)deg,
(deg - int(deg))*60,
d->longitude<0?'W':'E');
_gps_nmea_printf(instance, "$GPGGA,%s,%s,%s,%01d,%02d,%04.1f,%07.2f,M,0.0,M,,",
tstring,
lat_string,
lng_string,
d->have_lock?1:0,
d->have_lock?_sitl->gps_numsats[instance]:3,
2.0,
d->altitude);
float speed_knots = norm(d->speedN, d->speedE) * M_PER_SEC_TO_KNOTS;
float heading = ToDeg(atan2f(d->speedE, d->speedN));
if (heading < 0) {
heading += 360.0f;
}
//$GPVTG,133.18,T,120.79,M,0.11,N,0.20,K,A*24
_gps_nmea_printf(instance, "$GPVTG,%.2f,T,%.2f,M,%.2f,N,%.2f,K,A",
tstring,
heading,
heading,
speed_knots,
speed_knots * KNOTS_TO_METERS_PER_SECOND * 3.6);
_gps_nmea_printf(instance, "$GPRMC,%s,%c,%s,%s,%.2f,%.2f,%s,,",
tstring,
d->have_lock?'A':'V',
lat_string,
lng_string,
speed_knots,
heading,
dstring);
if (_sitl->gps_hdg_enabled[instance] == SITL::SITL::GPS_HEADING_HDT) {
_gps_nmea_printf(instance, "$GPHDT,%.2f,T", d->yaw);
}
else if (_sitl->gps_hdg_enabled[instance] == SITL::SITL::GPS_HEADING_THS) {
_gps_nmea_printf(instance, "$GPTHS,%.2f,%c,T", d->yaw, d->have_lock ? 'A' : 'V');
}
}
void SITL_State::_sbp_send_message(uint16_t msg_type, uint16_t sender_id, uint8_t len, uint8_t *payload, uint8_t instance)
{
if (len != 0 && payload == 0) {
return; //SBP_NULL_ERROR;
}
uint8_t preamble = 0x55;
_gps_write(&preamble, 1, instance);
_gps_write((uint8_t*)&msg_type, 2, instance);
_gps_write((uint8_t*)&sender_id, 2, instance);
_gps_write(&len, 1, instance);
if (len > 0) {
_gps_write((uint8_t*)payload, len, instance);
}
uint16_t crc;
crc = crc16_ccitt((uint8_t*)&(msg_type), 2, 0);
crc = crc16_ccitt((uint8_t*)&(sender_id), 2, crc);
crc = crc16_ccitt(&(len), 1, crc);
crc = crc16_ccitt(payload, len, crc);
_gps_write((uint8_t*)&crc, 2, instance);
}
void SITL_State::_update_gps_sbp(const struct gps_data *d, uint8_t instance)
{
struct sbp_heartbeat_t {
bool sys_error : 1;
bool io_error : 1;
bool nap_error : 1;
uint8_t res : 5;
uint8_t protocol_minor : 8;
uint8_t protocol_major : 8;
uint8_t res2 : 7;
bool ext_antenna : 1;
} hb; // 4 bytes
struct PACKED sbp_gps_time_t {
uint16_t wn; //< GPS week number
uint32_t tow; //< GPS Time of Week rounded to the nearest ms
int32_t ns; //< Nanosecond remainder of rounded tow
uint8_t flags; //< Status flags (reserved)
} t;
struct PACKED sbp_pos_llh_t {
uint32_t tow; //< GPS Time of Week
double lat; //< Latitude
double lon; //< Longitude
double height; //< Height
uint16_t h_accuracy; //< Horizontal position accuracy estimate
uint16_t v_accuracy; //< Vertical position accuracy estimate
uint8_t n_sats; //< Number of satellites used in solution
uint8_t flags; //< Status flags
} pos;
struct PACKED sbp_vel_ned_t {
uint32_t tow; //< GPS Time of Week
int32_t n; //< Velocity North coordinate
int32_t e; //< Velocity East coordinate
int32_t d; //< Velocity Down coordinate
uint16_t h_accuracy; //< Horizontal velocity accuracy estimate
uint16_t v_accuracy; //< Vertical velocity accuracy estimate
uint8_t n_sats; //< Number of satellites used in solution
uint8_t flags; //< Status flags (reserved)
} velned;
struct PACKED sbp_dops_t {
uint32_t tow; //< GPS Time of Week
uint16_t gdop; //< Geometric Dilution of Precision
uint16_t pdop; //< Position Dilution of Precision
uint16_t tdop; //< Time Dilution of Precision
uint16_t hdop; //< Horizontal Dilution of Precision
uint16_t vdop; //< Vertical Dilution of Precision
uint8_t flags; //< Status flags (reserved)
} dops;
static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF;
static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0100;
static const uint16_t SBP_DOPS_MSGTYPE = 0x0206;
static const uint16_t SBP_POS_LLH_MSGTYPE = 0x0201;
static const uint16_t SBP_VEL_NED_MSGTYPE = 0x0205;
uint16_t time_week;
uint32_t time_week_ms;
gps_time(&time_week, &time_week_ms);
t.wn = time_week;
t.tow = time_week_ms;
t.ns = 0;
t.flags = 0;
_sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance);
if (!d->have_lock) {
return;
}
pos.tow = time_week_ms;
pos.lon = d->longitude;
pos.lat= d->latitude;
pos.height = d->altitude;
pos.h_accuracy = _sitl->gps_accuracy[instance]*1000;
pos.v_accuracy = _sitl->gps_accuracy[instance]*1000;
pos.n_sats = _sitl->gps_numsats[instance];
// Send single point position solution
pos.flags = 0;
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance);
// Send "pseudo-absolute" RTK position solution
pos.flags = 1;
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance);
velned.tow = time_week_ms;
velned.n = 1e3 * d->speedN;
velned.e = 1e3 * d->speedE;
velned.d = 1e3 * d->speedD;
velned.h_accuracy = 5e3;
velned.v_accuracy = 5e3;
velned.n_sats = _sitl->gps_numsats[instance];
velned.flags = 0;
_sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance);
static uint32_t do_every_count = 0;
if (do_every_count % 5 == 0) {
dops.tow = time_week_ms;
dops.gdop = 1;
dops.pdop = 1;
dops.tdop = 1;
dops.hdop = 100;
dops.vdop = 1;
dops.flags = 1;
_sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops),
(uint8_t*)&dops, instance);
hb.protocol_major = 0; //Sends protocol version 0
_sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb),
(uint8_t*)&hb, instance);
}
do_every_count++;
}
void SITL_State::_update_gps_sbp2(const struct gps_data *d, uint8_t instance)
{
struct sbp_heartbeat_t {
bool sys_error : 1;
bool io_error : 1;
bool nap_error : 1;
uint8_t res : 5;
uint8_t protocol_minor : 8;
uint8_t protocol_major : 8;
uint8_t res2 : 7;
bool ext_antenna : 1;
} hb; // 4 bytes
struct PACKED sbp_gps_time_t {
uint16_t wn; //< GPS week number
uint32_t tow; //< GPS Time of Week rounded to the nearest ms
int32_t ns; //< Nanosecond remainder of rounded tow
uint8_t flags; //< Status flags (reserved)
} t;
struct PACKED sbp_pos_llh_t {
uint32_t tow; //< GPS Time of Week
double lat; //< Latitude
double lon; //< Longitude
double height; //< Height
uint16_t h_accuracy; //< Horizontal position accuracy estimate
uint16_t v_accuracy; //< Vertical position accuracy estimate
uint8_t n_sats; //< Number of satellites used in solution
uint8_t flags; //< Status flags
} pos;
struct PACKED sbp_vel_ned_t {
uint32_t tow; //< GPS Time of Week
int32_t n; //< Velocity North coordinate
int32_t e; //< Velocity East coordinate
int32_t d; //< Velocity Down coordinate
uint16_t h_accuracy; //< Horizontal velocity accuracy estimate
uint16_t v_accuracy; //< Vertical velocity accuracy estimate
uint8_t n_sats; //< Number of satellites used in solution
uint8_t flags; //< Status flags (reserved)
} velned;
struct PACKED sbp_dops_t {
uint32_t tow; //< GPS Time of Week
uint16_t gdop; //< Geometric Dilution of Precision
uint16_t pdop; //< Position Dilution of Precision
uint16_t tdop; //< Time Dilution of Precision
uint16_t hdop; //< Horizontal Dilution of Precision
uint16_t vdop; //< Vertical Dilution of Precision
uint8_t flags; //< Status flags (reserved)
} dops;
static const uint16_t SBP_HEARTBEAT_MSGTYPE = 0xFFFF;
static const uint16_t SBP_GPS_TIME_MSGTYPE = 0x0102;
static const uint16_t SBP_DOPS_MSGTYPE = 0x0208;
static const uint16_t SBP_POS_LLH_MSGTYPE = 0x020A;
static const uint16_t SBP_VEL_NED_MSGTYPE = 0x020E;
uint16_t time_week;
uint32_t time_week_ms;
gps_time(&time_week, &time_week_ms);
t.wn = time_week;
t.tow = time_week_ms;
t.ns = 0;
t.flags = 1;
_sbp_send_message(SBP_GPS_TIME_MSGTYPE, 0x2222, sizeof(t), (uint8_t*)&t, instance);
if (!d->have_lock) {
return;
}
pos.tow = time_week_ms;
pos.lon = d->longitude;
pos.lat= d->latitude;
pos.height = d->altitude;
pos.h_accuracy = _sitl->gps_accuracy[instance]*1000;
pos.v_accuracy = _sitl->gps_accuracy[instance]*1000;
pos.n_sats = _sitl->gps_numsats[instance];
// Send single point position solution
pos.flags = 1;
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance);
// Send "pseudo-absolute" RTK position solution
pos.flags = 4;
_sbp_send_message(SBP_POS_LLH_MSGTYPE, 0x2222, sizeof(pos), (uint8_t*)&pos, instance);
velned.tow = time_week_ms;
velned.n = 1e3 * d->speedN;
velned.e = 1e3 * d->speedE;
velned.d = 1e3 * d->speedD;
velned.h_accuracy = 5e3;
velned.v_accuracy = 5e3;
velned.n_sats = _sitl->gps_numsats[instance];
velned.flags = 1;
_sbp_send_message(SBP_VEL_NED_MSGTYPE, 0x2222, sizeof(velned), (uint8_t*)&velned, instance);
static uint32_t do_every_count = 0;
if (do_every_count % 5 == 0) {
dops.tow = time_week_ms;
dops.gdop = 1;
dops.pdop = 1;
dops.tdop = 1;
dops.hdop = 100;
dops.vdop = 1;
dops.flags = 1;
_sbp_send_message(SBP_DOPS_MSGTYPE, 0x2222, sizeof(dops),
(uint8_t*)&dops, instance);
hb.protocol_major = 2; //Sends protocol version 2.0
_sbp_send_message(SBP_HEARTBEAT_MSGTYPE, 0x2222, sizeof(hb),
(uint8_t*)&hb, instance);
}
do_every_count++;
}
void SITL_State::_update_gps_nova(const struct gps_data *d, uint8_t instance)
{
static struct PACKED nova_header
{
// 0
uint8_t preamble[3];
// 3
uint8_t headerlength;
// 4
uint16_t messageid;
// 6
uint8_t messagetype;
//7
uint8_t portaddr;
//8
uint16_t messagelength;
//10
uint16_t sequence;
//12
uint8_t idletime;
//13
uint8_t timestatus;
//14
uint16_t week;
//16
uint32_t tow;
//20
uint32_t recvstatus;
// 24
uint16_t resv;
//26
uint16_t recvswver;
} header;
struct PACKED psrdop
{
float gdop;
float pdop;
float hdop;
float htdop;
float tdop;
float cutoff;
uint32_t svcount;
// extra data for individual prns
} psrdop {};
struct PACKED bestpos
{
uint32_t solstat;
uint32_t postype;
double lat;
double lng;
double hgt;
float undulation;
uint32_t datumid;
float latsdev;
float lngsdev;
float hgtsdev;
// 4 bytes
uint8_t stnid[4];
float diffage;
float sol_age;
uint8_t svstracked;
uint8_t svsused;
uint8_t svsl1;
uint8_t svsmultfreq;
uint8_t resv;
uint8_t extsolstat;
uint8_t galbeisigmask;
uint8_t gpsglosigmask;
} bestpos {};
struct PACKED bestvel
{
uint32_t solstat;
uint32_t veltype;
float latency;
float age;
double horspd;
double trkgnd;
// + up
double vertspd;
float resv;
} bestvel {};
uint16_t time_week;
uint32_t time_week_ms;
gps_time(&time_week, &time_week_ms);
header.preamble[0] = 0xaa;
header.preamble[1] = 0x44;
header.preamble[2] = 0x12;
header.headerlength = sizeof(header);
header.week = time_week;
header.tow = time_week_ms;
header.messageid = 174;
header.messagelength = sizeof(psrdop);
header.sequence += 1;
psrdop.hdop = 1.20;
psrdop.htdop = 1.20;
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&psrdop, sizeof(psrdop), instance);
header.messageid = 99;
header.messagelength = sizeof(bestvel);
header.sequence += 1;
bestvel.horspd = norm(d->speedN, d->speedE);
bestvel.trkgnd = ToDeg(atan2f(d->speedE, d->speedN));
bestvel.vertspd = -d->speedD;
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestvel, sizeof(bestvel), instance);
header.messageid = 42;
header.messagelength = sizeof(bestpos);
header.sequence += 1;
bestpos.lat = d->latitude;
bestpos.lng = d->longitude;
bestpos.hgt = d->altitude;
bestpos.svsused = _sitl->gps_numsats[instance];
bestpos.latsdev=0.2;
bestpos.lngsdev=0.2;
bestpos.hgtsdev=0.2;
bestpos.solstat=0;
bestpos.postype=32;
_nova_send_message((uint8_t*)&header,sizeof(header),(uint8_t*)&bestpos, sizeof(bestpos), instance);
}
void SITL_State::_nova_send_message(uint8_t *header, uint8_t headerlength, uint8_t *payload, uint8_t payloadlen, uint8_t instance)
{
_gps_write(header, headerlength, instance);
_gps_write(payload, payloadlen, instance);
uint32_t crc = CalculateBlockCRC32(headerlength, header, (uint32_t)0);
crc = CalculateBlockCRC32(payloadlen, payload, crc);
_gps_write((uint8_t*)&crc, 4, instance);
}
#define CRC32_POLYNOMIAL 0xEDB88320L
uint32_t SITL_State::CRC32Value(uint32_t icrc)
{
int i;
uint32_t crc = icrc;
for ( i = 8 ; i > 0; i-- )
{
if ( crc & 1 )
crc = ( crc >> 1 ) ^ CRC32_POLYNOMIAL;
else
crc >>= 1;
}
return crc;
}
uint32_t SITL_State::CalculateBlockCRC32(uint32_t length, uint8_t *buffer, uint32_t crc)
{
while ( length-- != 0 )
{
crc = ((crc >> 8) & 0x00FFFFFFL) ^ (CRC32Value(((uint32_t) crc ^ *buffer++) & 0xff));
}
return( crc );
}
/*
temporary method to use file as GPS data
*/
void SITL_State::_update_gps_file(uint8_t instance)
{
static int fd = -1;
static int fd2 = -1;
int temp_fd;
if (instance == 0) {
if (fd == -1) {
fd = open("/tmp/gps.dat", O_RDONLY|O_CLOEXEC);
}
temp_fd = fd;
} else {
if (fd2 == -1) {
fd2 = open("/tmp/gps2.dat", O_RDONLY|O_CLOEXEC);
}
temp_fd = fd2;
}
if (temp_fd == -1) {
return;
}
char buf[200];
ssize_t ret = ::read(temp_fd, buf, sizeof(buf));
if (ret > 0) {
::printf("wrote gps %u bytes\n", (unsigned)ret);
_gps_write((const uint8_t *)buf, ret, instance);
}
if (ret == 0) {
::printf("gps rewind\n");
lseek(temp_fd, 0, SEEK_SET);
}
}
/*
possibly send a new GPS packet
*/
void SITL_State::_update_gps(double latitude, double longitude, float altitude,
double speedN, double speedE, double speedD,
double yaw, bool _have_lock)
{
char c;
if (AP_HAL::millis() < 20000) {
// apply the init offsets for the first 20s. This allows for
// having the origin a long way from the takeoff location,
// which makes testing long flights easier
latitude += _sitl->gps_init_lat_ofs;
longitude += _sitl->gps_init_lon_ofs;
altitude += _sitl->gps_init_alt_ofs;
}
//Capture current position as basestation location for
if (!_gps_has_basestation_position &&
_have_lock &&
AP_HAL::millis() >= _sitl->gps_lock_time[0]*1000UL) {
_gps_basestation_data.latitude = latitude;
_gps_basestation_data.longitude = longitude;
_gps_basestation_data.altitude = altitude;
_gps_basestation_data.speedN = speedN;
_gps_basestation_data.speedE = speedE;
_gps_basestation_data.speedD = speedD;
_gps_basestation_data.have_lock = _have_lock;
_gps_has_basestation_position = true;
}
for (uint8_t idx=0; idx<2; idx++) {
struct gps_data d;
// simulate delayed lock times
bool have_lock = (_have_lock && !_sitl->gps_disable[idx] && AP_HAL::millis() >= _sitl->gps_lock_time[idx]*1000UL);
// run at configured GPS rate (default 5Hz)
if ((AP_HAL::millis() - gps_state[idx].last_update) < (uint32_t)(1000/_sitl->gps_hertz[idx])) {
continue;
}
// swallow any config bytes
if (gps_state[idx].gps_fd != 0) {
read(gps_state[idx].gps_fd, &c, 1);
}
gps_state[idx].last_update = AP_HAL::millis();
d.latitude = latitude;
d.longitude = longitude;
d.yaw = yaw;
// add an altitude error controlled by a slow sine wave
d.altitude = altitude + _sitl->gps_noise[idx] * sinf(AP_HAL::millis() * 0.0005f) + _sitl->gps_alt_offset[idx];
// Add offet to c.g. velocity to get velocity at antenna and add simulated error
Vector3f velErrorNED = _sitl->gps_vel_err[idx];
d.speedN = speedN + (velErrorNED.x * rand_float());
d.speedE = speedE + (velErrorNED.y * rand_float());
d.speedD = speedD + (velErrorNED.z * rand_float());
d.have_lock = have_lock;
if (_sitl->gps_drift_alt[idx] > 0) {
// slow altitude drift
d.altitude += _sitl->gps_drift_alt[idx]*sinf(AP_HAL::millis()*0.001f*0.02f);
}
// correct the latitude, longitude, hiehgt and NED velocity for the offset between
// the vehicle c.g. and GPs antenna
Vector3f posRelOffsetBF = _sitl->gps_pos_offset[idx];
if (!posRelOffsetBF.is_zero()) {
// get a rotation matrix following DCM conventions (body to earth)
Matrix3f rotmat;
_sitl->state.quaternion.rotation_matrix(rotmat);
// rotate the antenna offset into the earth frame
Vector3f posRelOffsetEF = rotmat * posRelOffsetBF;
// Add the offset to the latitude, longitude and height using a spherical earth approximation
double const earth_rad_inv = 1.569612305760477e-7; // use Authalic/Volumetric radius
double lng_scale_factor = earth_rad_inv / cos(radians(d.latitude));
d.latitude += degrees(posRelOffsetEF.x * earth_rad_inv);
d.longitude += degrees(posRelOffsetEF.y * lng_scale_factor);
d.altitude -= posRelOffsetEF.z;
// calculate a velocity offset due to the antenna position offset and body rotation rate
// note: % operator is overloaded for cross product
Vector3f gyro(radians(_sitl->state.rollRate),
radians(_sitl->state.pitchRate),
radians(_sitl->state.yawRate));
Vector3f velRelOffsetBF = gyro % posRelOffsetBF;
// rotate the velocity offset into earth frame and add to the c.g. velocity
Vector3f velRelOffsetEF = rotmat * velRelOffsetBF;
d.speedN += velRelOffsetEF.x;
d.speedE += velRelOffsetEF.y;
d.speedD += velRelOffsetEF.z;
}
// add in some GPS lag
uint8_t &next_index = gps_state[idx].next_index;
uint8_t &delay = gps_state[idx].delay;
_gps_data[idx][next_index++] = d;
if (next_index >= delay+1) {
next_index = 0;
}
d = _gps_data[idx][next_index];
if (_sitl->gps_delay[idx] != delay) {
// cope with updates to the delay control
delay = _sitl->gps_delay[idx];
for (uint8_t i=0; i<delay; i++) {
_gps_data[idx][i] = d;
}
}
if (gps_state[idx].gps_fd == 0) {
continue;
}
// Applying GPS glitch
// Using first gps glitch
Vector3f glitch_offsets = _sitl->gps_glitch[idx];
d.latitude += glitch_offsets.x;
d.longitude += glitch_offsets.y;
d.altitude += glitch_offsets.z;
if (gps_state[idx].gps_fd != 0) {
_update_gps_instance((SITL::SITL::GPSType)_sitl->gps_type[idx].get(), &d, idx);
}
}
}
void SITL_State::_update_gps_instance(SITL::SITL::GPSType gps_type, const struct gps_data *data, uint8_t instance) {
switch (gps_type) {
case SITL::SITL::GPS_TYPE_NONE:
// no GPS attached
break;
case SITL::SITL::GPS_TYPE_UBLOX:
_update_gps_ubx(data, instance);
break;
case SITL::SITL::GPS_TYPE_MTK:
_update_gps_mtk(data, instance);
break;
case SITL::SITL::GPS_TYPE_MTK16:
_update_gps_mtk16(data, instance);
break;
case SITL::SITL::GPS_TYPE_MTK19:
_update_gps_mtk19(data, instance);
break;
case SITL::SITL::GPS_TYPE_NMEA:
_update_gps_nmea(data, instance);
break;
case SITL::SITL::GPS_TYPE_SBP:
_update_gps_sbp(data, instance);
break;
case SITL::SITL::GPS_TYPE_SBP2:
_update_gps_sbp2(data, instance);
break;
case SITL::SITL::GPS_TYPE_NOVA:
_update_gps_nova(data, instance);
break;
case SITL::SITL::GPS_TYPE_FILE:
_update_gps_file(instance);
break;
}
}
#endif