Ardupilot2/libraries/AP_HAL_ChibiOS/SPIDevice.cpp
Andrew Tridgell ce9b75fdf0 HAL_ChibiOS: added timeouts on all SPI transfers
this is never expected to trigger unless we have a severe MCU error as
SPI transfers don't rely on a response from a device.

The only case that we could get a timeout is when a bug leads to use
doing transfers from memory that does not support the DMA
transaction (such as on H7). This change turns that from a immediately
fatal lockup into a bus error and failed sensor
2019-04-30 10:16:38 +10:00

475 lines
14 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "SPIDevice.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_HAL/utility/OwnPtr.h>
#include <AP_InternalError/AP_InternalError.h>
#include "Util.h"
#include "Scheduler.h"
#include "Semaphores.h"
#include <stdio.h>
#include "hwdef/common/stm32_util.h"
#if HAL_USE_SPI == TRUE
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
// SPI mode numbers
#if defined(STM32H7)
#define SPIDEV_MODE0 0
#define SPIDEV_MODE1 SPI_CFG2_CPHA
#define SPIDEV_MODE2 SPI_CFG2_CPOL
#define SPIDEV_MODE3 SPI_CFG2_CPOL | SPI_CFG2_CPHA
#define SPI1_CLOCK STM32_SPI1CLK
#define SPI2_CLOCK STM32_SPI2CLK
#define SPI3_CLOCK STM32_SPI3CLK
#define SPI4_CLOCK STM32_SPI4CLK
#define SPI5_CLOCK STM32_SPI5CLK
#define SPI6_CLOCK STM32_SPI6CLK
#else // F4 and F7
#define SPIDEV_MODE0 0
#define SPIDEV_MODE1 SPI_CR1_CPHA
#define SPIDEV_MODE2 SPI_CR1_CPOL
#define SPIDEV_MODE3 SPI_CR1_CPOL | SPI_CR1_CPHA
#define SPI1_CLOCK STM32_PCLK2
#define SPI2_CLOCK STM32_PCLK1
#define SPI3_CLOCK STM32_PCLK1
#define SPI4_CLOCK STM32_PCLK2
#define SPI5_CLOCK STM32_PCLK2
#define SPI6_CLOCK STM32_PCLK2
#endif
// expected bus clock speeds
static const uint32_t bus_clocks[6] = {
SPI1_CLOCK, SPI2_CLOCK, SPI3_CLOCK, SPI4_CLOCK, SPI5_CLOCK, SPI6_CLOCK
};
static const struct SPIDriverInfo {
SPIDriver *driver;
uint8_t busid; // used for device IDs in parameters
uint8_t dma_channel_rx;
uint8_t dma_channel_tx;
} spi_devices[] = { HAL_SPI_BUS_LIST };
#define MHZ (1000U*1000U)
#define KHZ (1000U)
// device list comes from hwdef.dat
ChibiOS::SPIDesc SPIDeviceManager::device_table[] = { HAL_SPI_DEVICE_LIST };
SPIBus::SPIBus(uint8_t _bus) :
DeviceBus(APM_SPI_PRIORITY),
bus(_bus)
{
chMtxObjectInit(&dma_lock);
// allow for sharing of DMA channels with other peripherals
dma_handle = new Shared_DMA(spi_devices[bus].dma_channel_rx,
spi_devices[bus].dma_channel_tx,
FUNCTOR_BIND_MEMBER(&SPIBus::dma_allocate, void, Shared_DMA *),
FUNCTOR_BIND_MEMBER(&SPIBus::dma_deallocate, void, Shared_DMA *));
}
/*
allocate DMA channel
*/
void SPIBus::dma_allocate(Shared_DMA *ctx)
{
// nothing to do as we call spiStart() on each transaction
}
/*
deallocate DMA channel
*/
void SPIBus::dma_deallocate(Shared_DMA *ctx)
{
chMtxLock(&dma_lock);
// another non-SPI peripheral wants one of our DMA channels
if (spi_started) {
spiStop(spi_devices[bus].driver);
spi_started = false;
}
chMtxUnlock(&dma_lock);
}
SPIDevice::SPIDevice(SPIBus &_bus, SPIDesc &_device_desc)
: bus(_bus)
, device_desc(_device_desc)
{
set_device_bus(spi_devices[_bus.bus].busid);
set_device_address(_device_desc.device);
freq_flag_low = derive_freq_flag(device_desc.lowspeed);
freq_flag_high = derive_freq_flag(device_desc.highspeed);
set_speed(AP_HAL::Device::SPEED_LOW);
asprintf(&pname, "SPI:%s:%u:%u",
device_desc.name,
(unsigned)bus.bus, (unsigned)device_desc.device);
//printf("SPI device %s on %u:%u at speed %u mode %u\n",
// device_desc.name,
// (unsigned)bus.bus, (unsigned)device_desc.device,
// (unsigned)frequency, (unsigned)device_desc.mode);
}
SPIDevice::~SPIDevice()
{
//printf("SPI device %s on %u:%u closed\n", device_desc.name,
// (unsigned)bus.bus, (unsigned)device_desc.device);
free(pname);
}
SPIDriver * SPIDevice::get_driver() {
return spi_devices[device_desc.bus].driver;
}
bool SPIDevice::set_speed(AP_HAL::Device::Speed speed)
{
switch (speed) {
case AP_HAL::Device::SPEED_HIGH:
freq_flag = freq_flag_high;
break;
case AP_HAL::Device::SPEED_LOW:
freq_flag = freq_flag_low;
break;
}
return true;
}
/*
setup a bus slowdown factor for high speed mode
*/
void SPIDevice::set_slowdown(uint8_t slowdown)
{
slowdown = constrain_int16(slowdown+1, 1, 32);
freq_flag_high = derive_freq_flag(device_desc.highspeed / slowdown);
}
/*
low level transfer function
*/
bool SPIDevice::do_transfer(const uint8_t *send, uint8_t *recv, uint32_t len)
{
bool old_cs_forced = cs_forced;
if (!set_chip_select(true)) {
return false;
}
bool ret = true;
#if defined(HAL_SPI_USE_POLLED)
for (uint16_t i=0; i<len; i++) {
uint8_t ret = spiPolledExchange(spi_devices[device_desc.bus].driver, send?send[i]:0);
if (recv) {
recv[i] = ret;
}
}
#else
bus.bouncebuffer_setup(send, len, recv, len);
osalSysLock();
if (send == nullptr) {
spiStartReceiveI(spi_devices[device_desc.bus].driver, len, recv);
} else if (recv == nullptr) {
spiStartSendI(spi_devices[device_desc.bus].driver, len, send);
} else {
spiStartExchangeI(spi_devices[device_desc.bus].driver, len, send, recv);
}
// we allow SPI transfers to take a maximum of 20ms plus 32us per
// byte. This covers all use cases in ArduPilot. We don't ever
// expect this timeout to trigger unless there is a severe MCU
// error
const uint32_t timeout_us = 20000U + len * 32U;
msg_t msg = osalThreadSuspendTimeoutS(&spi_devices[device_desc.bus].driver->thread, TIME_MS2I(timeout_us));
osalSysUnlock();
if (msg == MSG_TIMEOUT) {
ret = false;
AP::internalerror().error(AP_InternalError::error_t::spi_fail);
spiAbort(spi_devices[device_desc.bus].driver);
}
bus.bouncebuffer_finish(send, recv, len);
#endif
set_chip_select(old_cs_forced);
return ret;
}
bool SPIDevice::clock_pulse(uint32_t n)
{
if (!cs_forced) {
//special mode to init sdcard without cs asserted
bus.semaphore.take(HAL_SEMAPHORE_BLOCK_FOREVER);
acquire_bus(true, true);
spiIgnore(spi_devices[device_desc.bus].driver, n);
acquire_bus(false, true);
bus.semaphore.give();
} else {
bus.semaphore.assert_owner();
spiIgnore(spi_devices[device_desc.bus].driver, n);
}
return true;
}
uint32_t SPIDevice::derive_freq_flag_bus(uint8_t busid, uint32_t _frequency)
{
uint32_t spi_clock_freq = SPI1_CLOCK;
if (busid > 0 && uint8_t(busid-1) < ARRAY_SIZE(bus_clocks)) {
spi_clock_freq = bus_clocks[busid-1] / 2;
}
// find first divisor that brings us below the desired SPI clock
uint32_t i = 0;
while (spi_clock_freq > _frequency && i<7) {
spi_clock_freq >>= 1;
i++;
}
// assuming the bitrate bits are consecutive in the CR1 register,
// we can just multiply by BR_0 to get the right bits for the desired
// scaling
#if defined(STM32H7)
return (i * SPI_CFG1_MBR_0) | SPI_CFG1_DSIZE_VALUE(7); // 8 bit transfers
#else
return i * SPI_CR1_BR_0;
#endif
}
uint32_t SPIDevice::derive_freq_flag(uint32_t _frequency)
{
uint8_t busid = spi_devices[device_desc.bus].busid;
return derive_freq_flag_bus(busid, _frequency);
}
bool SPIDevice::transfer(const uint8_t *send, uint32_t send_len,
uint8_t *recv, uint32_t recv_len)
{
if (!bus.semaphore.check_owner()) {
hal.console->printf("SPI: not owner of 0x%x\n", unsigned(get_bus_id()));
return false;
}
if ((send_len == recv_len && send == recv) || !send || !recv) {
// simplest cases, needed for DMA
return do_transfer(send, recv, recv_len?recv_len:send_len);
}
uint8_t buf[send_len+recv_len];
if (send_len > 0) {
memcpy(buf, send, send_len);
}
if (recv_len > 0) {
memset(&buf[send_len], 0, recv_len);
}
bool ret = do_transfer(buf, buf, send_len+recv_len);
if (ret && recv_len > 0) {
memcpy(recv, &buf[send_len], recv_len);
}
return ret;
}
bool SPIDevice::transfer_fullduplex(const uint8_t *send, uint8_t *recv, uint32_t len)
{
bus.semaphore.assert_owner();
uint8_t buf[len];
memcpy(buf, send, len);
bool ret = do_transfer(buf, buf, len);
if (ret) {
memcpy(recv, buf, len);
}
return ret;
}
AP_HAL::Semaphore *SPIDevice::get_semaphore()
{
return &bus.semaphore;
}
AP_HAL::Device::PeriodicHandle SPIDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
return bus.register_periodic_callback(period_usec, cb, this);
}
bool SPIDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec)
{
return bus.adjust_timer(h, period_usec);
}
/*
used to acquire bus and (optionally) assert cs
*/
bool SPIDevice::acquire_bus(bool set, bool skip_cs)
{
bus.semaphore.assert_owner();
if (set && cs_forced) {
return true;
}
if (!set && !cs_forced) {
return false;
}
if (!set && cs_forced) {
if(!skip_cs) {
spiUnselectI(spi_devices[device_desc.bus].driver); /* Slave Select de-assertion. */
}
spiReleaseBus(spi_devices[device_desc.bus].driver); /* Ownership release. */
cs_forced = false;
bus.dma_handle->unlock();
} else {
bus.dma_handle->lock();
spiAcquireBus(spi_devices[device_desc.bus].driver); /* Acquire ownership of the bus. */
bus.spicfg.end_cb = nullptr;
bus.spicfg.ssport = PAL_PORT(device_desc.pal_line);
bus.spicfg.sspad = PAL_PAD(device_desc.pal_line);
#if defined(STM32H7)
bus.spicfg.cfg1 = freq_flag;
bus.spicfg.cfg2 = device_desc.mode;
if (bus.spicfg.dummytx == nullptr) {
bus.spicfg.dummytx = (uint32_t *)malloc_dma(4);
memset(bus.spicfg.dummytx, 0xFF, 4);
}
if (bus.spicfg.dummyrx == nullptr) {
bus.spicfg.dummyrx = (uint32_t *)malloc_dma(4);
}
#else
bus.spicfg.cr1 = (uint16_t)(freq_flag | device_desc.mode);
bus.spicfg.cr2 = 0;
#endif
if (bus.spi_started) {
spiStop(spi_devices[device_desc.bus].driver);
bus.spi_started = false;
}
spiStart(spi_devices[device_desc.bus].driver, &bus.spicfg); /* Setup transfer parameters. */
bus.spi_started = true;
if(!skip_cs) {
spiSelectI(spi_devices[device_desc.bus].driver); /* Slave Select assertion. */
}
cs_forced = true;
}
return true;
}
/*
allow for control of SPI chip select pin
*/
bool SPIDevice::set_chip_select(bool set) {
return acquire_bus(set, false);
}
/*
return a SPIDevice given a string device name
*/
AP_HAL::OwnPtr<AP_HAL::SPIDevice>
SPIDeviceManager::get_device(const char *name)
{
/* Find the bus description in the table */
uint8_t i;
for (i = 0; i<ARRAY_SIZE(device_table); i++) {
if (strcmp(device_table[i].name, name) == 0) {
break;
}
}
if (i == ARRAY_SIZE(device_table)) {
return AP_HAL::OwnPtr<AP_HAL::SPIDevice>(nullptr);
}
SPIDesc &desc = device_table[i];
// find the bus
SPIBus *busp;
for (busp = buses; busp; busp = (SPIBus *)busp->next) {
if (busp->bus == desc.bus) {
break;
}
}
if (busp == nullptr) {
// create a new one
busp = new SPIBus(desc.bus);
if (busp == nullptr) {
return nullptr;
}
busp->next = buses;
busp->bus = desc.bus;
buses = busp;
}
return AP_HAL::OwnPtr<AP_HAL::SPIDevice>(new SPIDevice(*busp, desc));
}
#ifdef HAL_SPI_CHECK_CLOCK_FREQ
/*
test clock frequencies. This measures the actual SPI clock
frequencies on all configured SPI buses. Used during board bringup
to validate clock configuration
*/
void SPIDevice::test_clock_freq(void)
{
// delay for USB to come up
hal.console->printf("Waiting for USB\n");
for (uint8_t i=0; i<3; i++) {
hal.scheduler->delay(1000);
hal.console->printf("Waiting %u\n", AP_HAL::millis());
}
hal.console->printf("CLOCKS=\n");
for (uint8_t i=0; i<ARRAY_SIZE(bus_clocks); i++) {
hal.console->printf("%u:%u ", i+1, bus_clocks[i]);
}
hal.console->printf("\n");
// we will send 1024 bytes without any CS asserted and measure the
// time it takes to do the transfer
uint16_t len = 1024;
uint8_t *buf1 = (uint8_t *)hal.util->malloc_type(len, AP_HAL::Util::MEM_DMA_SAFE);
uint8_t *buf2 = (uint8_t *)hal.util->malloc_type(len, AP_HAL::Util::MEM_DMA_SAFE);
for (uint8_t i=0; i<ARRAY_SIZE(spi_devices); i++) {
SPIConfig spicfg {};
const uint32_t target_freq = 2000000UL;
// use a clock divisor of 256 for maximum resolution
#if defined(STM32H7)
spicfg.cfg1 = derive_freq_flag_bus(spi_devices[i].busid, target_freq);
#else
spicfg.cr1 = derive_freq_flag_bus(spi_devices[i].busid, target_freq);
#endif
spiAcquireBus(spi_devices[i].driver);
spiStart(spi_devices[i].driver, &spicfg);
uint32_t t0 = AP_HAL::micros();
spiStartExchange(spi_devices[i].driver, len, buf1, buf2);
chSysLock();
msg_t msg = osalThreadSuspendTimeoutS(&spi_devices[i].driver->thread, TIME_MS2I(100));
chSysUnlock();
if (msg == MSG_TIMEOUT) {
spiAbort(spi_devices[i].driver);
hal.console->printf("SPI[%u] FAIL %p %p\n", spi_devices[i].busid, buf1, buf2);
spiStop(spi_devices[i].driver);
spiReleaseBus(spi_devices[i].driver);
continue;
}
uint32_t t1 = AP_HAL::micros();
spiStop(spi_devices[i].driver);
spiReleaseBus(spi_devices[i].driver);
hal.console->printf("SPI[%u] clock=%u\n", spi_devices[i].busid, unsigned(1000000ULL * len * 8ULL / uint64_t(t1 - t0)));
}
hal.util->free_type(buf1, len, AP_HAL::Util::MEM_DMA_SAFE);
hal.util->free_type(buf2, len, AP_HAL::Util::MEM_DMA_SAFE);
}
#endif // HAL_SPI_CHECK_CLOCK_FREQ
#endif // HAL_USE_SPI