Ardupilot2/libraries/AP_Compass/AP_Compass.h

491 lines
16 KiB
C++

#pragma once
#include <inttypes.h>
#include <AP_Common/AP_Common.h>
#include <AP_Declination/AP_Declination.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Param/AP_Param.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include "CompassCalibrator.h"
#include "AP_Compass_Backend.h"
#include "Compass_PerMotor.h"
// motor compensation types (for use with motor_comp_enabled)
#define AP_COMPASS_MOT_COMP_DISABLED 0x00
#define AP_COMPASS_MOT_COMP_THROTTLE 0x01
#define AP_COMPASS_MOT_COMP_CURRENT 0x02
#define AP_COMPASS_MOT_COMP_PER_MOTOR 0x03
// setup default mag orientation for some board types
#ifndef MAG_BOARD_ORIENTATION
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
# define MAG_BOARD_ORIENTATION ROTATION_YAW_90
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX && (CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI)
# define MAG_BOARD_ORIENTATION ROTATION_YAW_270
#else
# define MAG_BOARD_ORIENTATION ROTATION_NONE
#endif
#endif
// define default compass calibration fitness and consistency checks
#define AP_COMPASS_CALIBRATION_FITNESS_DEFAULT 16.0f
#define AP_COMPASS_MAX_XYZ_ANG_DIFF radians(90.0f)
#define AP_COMPASS_MAX_XY_ANG_DIFF radians(60.0f)
#define AP_COMPASS_MAX_XY_LENGTH_DIFF 200.0f
/**
maximum number of compass instances available on this platform. If more
than 1 then redundant sensors may be available
*/
#define COMPASS_MAX_INSTANCES 3
#define COMPASS_MAX_BACKEND 3
class CompassLearn;
class Compass
{
friend class AP_Compass_Backend;
public:
Compass();
/* Do not allow copies */
Compass(const Compass &other) = delete;
Compass &operator=(const Compass&) = delete;
// get singleton instance
static Compass *get_singleton() {
return _singleton;
}
friend class CompassLearn;
/// Initialize the compass device.
///
/// @returns True if the compass was initialized OK, false if it was not
/// found or is not functioning.
///
void init();
/// Read the compass and update the mag_ variables.
///
bool read();
bool enabled() const { return _enabled; }
/// Calculate the tilt-compensated heading_ variables.
///
/// @param dcm_matrix The current orientation rotation matrix
///
/// @returns heading in radians
///
float calculate_heading(const Matrix3f &dcm_matrix) const {
return calculate_heading(dcm_matrix, get_primary());
}
float calculate_heading(const Matrix3f &dcm_matrix, uint8_t i) const;
/// Sets offset x/y/z values.
///
/// @param i compass instance
/// @param offsets Offsets to the raw mag_ values in milligauss.
///
void set_offsets(uint8_t i, const Vector3f &offsets);
/// Sets and saves the compass offset x/y/z values.
///
/// @param i compass instance
/// @param offsets Offsets to the raw mag_ values in milligauss.
///
void set_and_save_offsets(uint8_t i, const Vector3f &offsets);
void set_and_save_diagonals(uint8_t i, const Vector3f &diagonals);
void set_and_save_offdiagonals(uint8_t i, const Vector3f &diagonals);
/// Saves the current offset x/y/z values for one or all compasses
///
/// @param i compass instance
///
/// This should be invoked periodically to save the offset values maintained by
/// ::learn_offsets.
///
void save_offsets(uint8_t i);
void save_offsets(void);
// return the number of compass instances
uint8_t get_count(void) const { return _compass_count; }
/// Return the current field as a Vector3f in milligauss
const Vector3f &get_field(uint8_t i) const { return _state[i].field; }
const Vector3f &get_field(void) const { return get_field(get_primary()); }
// compass calibrator interface
void cal_update();
// per-motor calibration access
void per_motor_calibration_start(void) {
_per_motor.calibration_start();
}
void per_motor_calibration_update(void) {
_per_motor.calibration_update();
}
void per_motor_calibration_end(void) {
_per_motor.calibration_end();
}
void start_calibration_all(bool retry=false, bool autosave=false, float delay_sec=0.0f, bool autoreboot = false);
void cancel_calibration_all();
bool compass_cal_requires_reboot() const { return _cal_complete_requires_reboot; }
bool is_calibrating() const;
// indicate which bit in LOG_BITMASK indicates we should log compass readings
void set_log_bit(uint32_t log_bit) { _log_bit = log_bit; }
/*
handle an incoming MAG_CAL command
*/
MAV_RESULT handle_mag_cal_command(const mavlink_command_long_t &packet);
void send_mag_cal_progress(mavlink_channel_t chan);
void send_mag_cal_report(mavlink_channel_t chan);
// check if the compasses are pointing in the same direction
bool consistent() const;
/// Return the health of a compass
bool healthy(uint8_t i) const { return _state[i].healthy; }
bool healthy(void) const { return healthy(get_primary()); }
uint8_t get_healthy_mask() const;
/// Returns the current offset values
///
/// @returns The current compass offsets in milligauss.
///
const Vector3f &get_offsets(uint8_t i) const { return _state[i].offset; }
const Vector3f &get_offsets(void) const { return get_offsets(get_primary()); }
const Vector3f &get_diagonals(uint8_t i) const { return _state[i].diagonals; }
const Vector3f &get_diagonals(void) const { return get_diagonals(get_primary()); }
const Vector3f &get_offdiagonals(uint8_t i) const { return _state[i].offdiagonals; }
const Vector3f &get_offdiagonals(void) const { return get_offdiagonals(get_primary()); }
/// Sets the initial location used to get declination
///
/// @param latitude GPS Latitude.
/// @param longitude GPS Longitude.
///
void set_initial_location(int32_t latitude, int32_t longitude);
// learn offsets accessor
bool learn_offsets_enabled() const { return _learn == LEARN_INFLIGHT; }
/// return true if the compass should be used for yaw calculations
bool use_for_yaw(uint8_t i) const;
bool use_for_yaw(void) const;
void set_use_for_yaw(uint8_t i, bool use) {
_state[i].use_for_yaw.set(use);
}
/// Sets the local magnetic field declination.
///
/// @param radians Local field declination.
/// @param save_to_eeprom true to save to eeprom (false saves only to memory)
///
void set_declination(float radians, bool save_to_eeprom = true);
float get_declination() const;
// set overall board orientation
void set_board_orientation(enum Rotation orientation, Matrix3f* custom_rotation = nullptr) {
_board_orientation = orientation;
_custom_rotation = custom_rotation;
}
/// Set the motor compensation type
///
/// @param comp_type 0 = disabled, 1 = enabled use throttle, 2 = enabled use current
///
void motor_compensation_type(const uint8_t comp_type);
/// get the motor compensation value.
uint8_t get_motor_compensation_type() const {
return _motor_comp_type;
}
/// Set the motor compensation factor x/y/z values.
///
/// @param i instance of compass
/// @param offsets Offsets multiplied by the throttle value and added to the raw mag_ values.
///
void set_motor_compensation(uint8_t i, const Vector3f &motor_comp_factor);
/// get motor compensation factors as a vector
const Vector3f& get_motor_compensation(uint8_t i) const { return _state[i].motor_compensation; }
const Vector3f& get_motor_compensation(void) const { return get_motor_compensation(get_primary()); }
/// Saves the current motor compensation x/y/z values.
///
/// This should be invoked periodically to save the offset values calculated by the motor compensation auto learning
///
void save_motor_compensation();
/// Returns the current motor compensation offset values
///
/// @returns The current compass offsets in milligauss.
///
const Vector3f &get_motor_offsets(uint8_t i) const { return _state[i].motor_offset; }
const Vector3f &get_motor_offsets(void) const { return get_motor_offsets(get_primary()); }
/// Set the throttle as a percentage from 0.0 to 1.0
/// @param thr_pct throttle expressed as a percentage from 0 to 1.0
void set_throttle(float thr_pct) {
if (_motor_comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
_thr = thr_pct;
}
}
/// Set the battery voltage for per-motor compensation
void set_voltage(float voltage) {
_per_motor.set_voltage(voltage);
}
/// Returns True if the compasses have been configured (i.e. offsets saved)
///
/// @returns True if compass has been configured
///
bool configured(uint8_t i);
bool configured(void);
/// Returns the instance of the primary compass
///
/// @returns the instance number of the primary compass
///
uint8_t get_primary(void) const { return _primary; }
// HIL methods
void setHIL(uint8_t instance, float roll, float pitch, float yaw);
void setHIL(uint8_t instance, const Vector3f &mag, uint32_t last_update_usec);
const Vector3f& getHIL(uint8_t instance) const;
void _setup_earth_field();
// enable HIL mode
void set_hil_mode(void) { _hil_mode = true; }
// return last update time in microseconds
uint32_t last_update_usec(void) const { return _state[get_primary()].last_update_usec; }
uint32_t last_update_usec(uint8_t i) const { return _state[i].last_update_usec; }
uint32_t last_update_ms(void) const { return _state[get_primary()].last_update_ms; }
uint32_t last_update_ms(uint8_t i) const { return _state[i].last_update_ms; }
static const struct AP_Param::GroupInfo var_info[];
// HIL variables
struct {
Vector3f Bearth;
float last_declination;
bool healthy[COMPASS_MAX_INSTANCES];
Vector3f field[COMPASS_MAX_INSTANCES];
} _hil;
enum LearnType {
LEARN_NONE=0,
LEARN_INTERNAL=1,
LEARN_EKF=2,
LEARN_INFLIGHT=3
};
// return the chosen learning type
enum LearnType get_learn_type(void) const {
return (enum LearnType)_learn.get();
}
// set the learning type
void set_learn_type(enum LearnType type, bool save) {
if (save) {
_learn.set_and_save((int8_t)type);
} else {
_learn.set((int8_t)type);
}
}
// return maximum allowed compass offsets
uint16_t get_offsets_max(void) const {
return (uint16_t)_offset_max.get();
}
uint8_t get_filter_range() const { return uint8_t(_filter_range.get()); }
private:
static Compass *_singleton;
/// Register a new compas driver, allocating an instance number
///
/// @return number of compass instances
uint8_t register_compass(void);
// load backend drivers
bool _add_backend(AP_Compass_Backend *backend);
void _probe_external_i2c_compasses(void);
void _detect_backends(void);
// compass cal
bool _accept_calibration(uint8_t i);
bool _accept_calibration_mask(uint8_t mask);
void _cancel_calibration(uint8_t i);
void _cancel_calibration_mask(uint8_t mask);
uint8_t _get_cal_mask() const;
bool _start_calibration(uint8_t i, bool retry=false, float delay_sec=0.0f);
bool _start_calibration_mask(uint8_t mask, bool retry=false, bool autosave=false, float delay_sec=0.0f, bool autoreboot=false);
bool _auto_reboot() { return _compass_cal_autoreboot; }
// see if we already have probed a i2c driver by bus number and address
bool _have_i2c_driver(uint8_t bus_num, uint8_t address) const;
//keep track of which calibrators have been saved
bool _cal_saved[COMPASS_MAX_INSTANCES];
bool _cal_autosave;
//autoreboot after compass calibration
bool _compass_cal_autoreboot;
bool _cal_complete_requires_reboot;
bool _cal_has_run;
// enum of drivers for COMPASS_TYPEMASK
enum DriverType {
DRIVER_HMC5883 =0,
DRIVER_LSM303D =1,
DRIVER_AK8963 =2,
DRIVER_BMM150 =3,
DRIVER_LSM9DS1 =4,
DRIVER_LIS3MDL =5,
DRIVER_AK09916 =6,
DRIVER_IST8310 =7,
DRIVER_ICM20948 =8,
DRIVER_MMC3416 =9,
DRIVER_UAVCAN =11,
DRIVER_QMC5883 =12,
DRIVER_SITL =13,
DRIVER_MAG3110 =14,
DRIVER_IST8308 = 15,
DRIVER_RM3100 =16,
};
bool _driver_enabled(enum DriverType driver_type);
// backend objects
AP_Compass_Backend *_backends[COMPASS_MAX_BACKEND];
uint8_t _backend_count;
// whether to enable the compass drivers at all
AP_Int8 _enabled;
// number of registered compasses.
uint8_t _compass_count;
// settable parameters
AP_Int8 _learn;
// board orientation from AHRS
enum Rotation _board_orientation = ROTATION_NONE;
Matrix3f* _custom_rotation;
// primary instance
AP_Int8 _primary;
// declination in radians
AP_Float _declination;
// enable automatic declination code
AP_Int8 _auto_declination;
// first-time-around flag used by offset nulling
bool _null_init_done;
// stores which bit is used to indicate we should log compass readings
uint32_t _log_bit = -1;
// used by offset correction
static const uint8_t _mag_history_size = 20;
// motor compensation type
// 0 = disabled, 1 = enabled for throttle, 2 = enabled for current
AP_Int8 _motor_comp_type;
// automatic compass orientation on calibration
AP_Int8 _rotate_auto;
// throttle expressed as a percentage from 0 ~ 1.0, used for motor compensation
float _thr;
struct mag_state {
AP_Int8 external;
bool healthy;
AP_Int8 orientation;
AP_Vector3f offset;
AP_Vector3f diagonals;
AP_Vector3f offdiagonals;
// device id detected at init.
// saved to eeprom when offsets are saved allowing ram &
// eeprom values to be compared as consistency check
AP_Int32 dev_id;
AP_Int32 expected_dev_id;
int32_t detected_dev_id;
AP_Int8 use_for_yaw;
uint8_t mag_history_index;
Vector3i mag_history[_mag_history_size];
// factors multiplied by throttle and added to compass outputs
AP_Vector3f motor_compensation;
// latest compensation added to compass
Vector3f motor_offset;
// corrected magnetic field strength
Vector3f field;
// when we last got data
uint32_t last_update_ms;
uint32_t last_update_usec;
// board specific orientation
enum Rotation rotation;
// accumulated samples, protected by _sem, used by AP_Compass_Backend
Vector3f accum;
uint32_t accum_count;
} _state[COMPASS_MAX_INSTANCES];
AP_Int16 _offset_max;
CompassCalibrator _calibrator[COMPASS_MAX_INSTANCES];
// per-motor compass compensation
Compass_PerMotor _per_motor{*this};
// if we want HIL only
bool _hil_mode:1;
AP_Float _calibration_threshold;
// mask of driver types to not load. Bit positions match DEVTYPE_ in backend
AP_Int32 _driver_type_mask;
AP_Int8 _filter_range;
CompassLearn *learn;
bool learn_allocated;
};
namespace AP {
Compass &compass();
};