Ardupilot2/libraries/APM_Control/AP_AutoTune.cpp
2021-04-15 06:57:16 +10:00

487 lines
14 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
The strategy for roll/pitch autotune is to give the user a AUTOTUNE
flight mode which behaves just like FBWA, but does automatic
tuning.
While the user is flying in AUTOTUNE the gains are saved every 10
seconds, but the saved gains are not the current gains, instead it
saves the gains from 10s ago. When the user exits AUTOTUNE the
gains are restored from 10s ago.
This allows the user to fly as much as they want in AUTOTUNE mode,
and if they are ever unhappy they just exit the mode. If they stay
in AUTOTUNE for more than 10s then their gains will have changed.
Using this approach users don't need any special switches, they
just need to be able to enter and exit AUTOTUNE mode
*/
#include "AP_AutoTune.h"
#include <AP_Common/AP_Common.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_Math/AP_Math.h>
extern const AP_HAL::HAL& hal;
// time in milliseconds between autotune saves
#define AUTOTUNE_SAVE_PERIOD 10000U
// step size for increasing gains, percentage
#define AUTOTUNE_INCREASE_FF_STEP 12
#define AUTOTUNE_INCREASE_PD_STEP 5
// step size for increasing gains when low impact, percentage
#define AUTOTUNE_INCREASE_PD_LOW_STEP 30
// step size for decreasing gains, percentage
#define AUTOTUNE_DECREASE_FF_STEP 15
#define AUTOTUNE_DECREASE_PD_STEP 20
// limits on IMAX
#define AUTOTUNE_MIN_IMAX 0.4
#define AUTOTUNE_MAX_IMAX 0.9
// ratio of I to P
#define AUTOTUNE_I_RATIO 0.75
// overshoot threshold
#define AUTOTUNE_OVERSHOOT 1.1
// constructor
AP_AutoTune::AP_AutoTune(ATGains &_gains, ATType _type,
const AP_Vehicle::FixedWing &parms,
AC_PID &_rpid) :
current(_gains),
rpid(_rpid),
type(_type),
aparm(parms),
ff_filter(2)
{}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <stdio.h>
# define Debug(fmt, args ...) do {::printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
#else
# define Debug(fmt, args ...)
#endif
/*
auto-tuning table. This table gives the starting values for key
tuning parameters based on a user chosen AUTOTUNE_LEVEL parameter
from 1 to 10. Level 1 is a very soft tune. Level 10 is a very
aggressive tune.
*/
static const struct {
float tau;
float rmax;
} tuning_table[] = {
{ 1.00, 20 }, // level 1
{ 0.90, 30 }, // level 2
{ 0.80, 40 }, // level 3
{ 0.70, 50 }, // level 4
{ 0.60, 60 }, // level 5
{ 0.50, 75 }, // level 6
{ 0.25, 90 }, // level 7
{ 0.12, 120 }, // level 8
{ 0.06, 160 }, // level 9
{ 0.03, 210 }, // level 10
{ 0.01, 300 }, // (yes, it goes to 11)
};
/*
start an autotune session
*/
void AP_AutoTune::start(void)
{
running = true;
state = ATState::IDLE;
uint32_t now = AP_HAL::millis();
last_save_ms = now;
restore = last_save = get_gains(current);
uint8_t level = aparm.autotune_level;
if (level > ARRAY_SIZE(tuning_table)) {
level = ARRAY_SIZE(tuning_table);
}
if (level < 1) {
level = 1;
}
target_rmax = tuning_table[level-1].rmax;
target_tau = tuning_table[level-1].tau;
// do first update of rmax and tau now
update_rmax();
rpid.kIMAX().set(constrain_float(rpid.kIMAX(), AUTOTUNE_MIN_IMAX, AUTOTUNE_MAX_IMAX));
next_save = current;
// use 2Hz filters on the actuator and rate to reduce impact of noise
actuator_filter.set_cutoff_frequency(AP::scheduler().get_loop_rate_hz(), 2);
rate_filter.set_cutoff_frequency(AP::scheduler().get_loop_rate_hz(), 2);
// scale slew limit to more agressively find oscillations during autotune
rpid.set_slew_limit_scale(1.5*45);
Debug("START FF -> %.3f\n", rpid.ff().get());
}
/*
called when we change state to see if we should change gains
*/
void AP_AutoTune::stop(void)
{
if (running) {
running = false;
save_gains(restore);
rpid.set_slew_limit_scale(45);
}
}
// @LoggerMessage: ATNP
// @Description: Plane AutoTune
// @Vehicles: Plane
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: State: tuning state
// @Field: Sur: control surface deflection
// @Field: Tar: target rate
// @Field: FF0: FF value single sample
// @Field: FF: FF value
// @Field: P: P value
// @Field: D: D value
// @Field: Action: action taken
/*
one update cycle of the autotuner
*/
void AP_AutoTune::update(AP_Logger::PID_Info &pinfo, float scaler)
{
if (!running) {
return;
}
check_save();
// see what state we are in
ATState new_state = state;
const float desired_rate = pinfo.target;
// filter actuator without I term
const float actuator = actuator_filter.apply(pinfo.FF + pinfo.P + pinfo.D);
const float actual_rate = rate_filter.apply(pinfo.actual);
max_actuator = MAX(max_actuator, actuator);
min_actuator = MIN(min_actuator, actuator);
max_rate = MAX(max_rate, actual_rate);
min_rate = MIN(min_rate, actual_rate);
max_target = MAX(max_target, desired_rate);
min_target = MIN(min_target, desired_rate);
max_P = MAX(max_P, fabsf(pinfo.P));
max_D = MAX(max_D, fabsf(pinfo.D));
min_Dmod = MIN(min_Dmod, pinfo.Dmod);
int16_t att_limit_cd;
if (type == AUTOTUNE_ROLL) {
att_limit_cd = aparm.roll_limit_cd;
} else {
att_limit_cd = MIN(abs(aparm.pitch_limit_max_cd),abs(aparm.pitch_limit_min_cd));
}
const float rate_threshold1 = 0.75 * MIN(att_limit_cd * 0.01 / current.tau.get(), current.rmax_pos);
const float rate_threshold2 = 0.25 * rate_threshold1;
switch (state) {
case ATState::IDLE:
if (desired_rate > rate_threshold1) {
new_state = ATState::DEMAND_POS;
} else if (desired_rate < -rate_threshold1) {
new_state = ATState::DEMAND_NEG;
}
break;
case ATState::DEMAND_POS:
if (desired_rate < rate_threshold2) {
new_state = ATState::IDLE;
}
break;
case ATState::DEMAND_NEG:
if (desired_rate > -rate_threshold2) {
new_state = ATState::IDLE;
}
break;
}
AP::logger().Write(
type==AUTOTUNE_ROLL?"ATNR":"ATNP",
"TimeUS,Axis,State,Sur,Tar,FF0,FF,P,D,Action",
"s--dk-----",
"F--000000-",
"QBBffffffB",
AP_HAL::micros64(),
unsigned(type),
unsigned(new_state),
actuator,
desired_rate,
FF_single,
current.FF,
current.P,
current.D,
unsigned(action));
if (new_state == state) {
return;
}
const uint32_t now = AP_HAL::millis();
if (new_state != ATState::IDLE) {
// starting an event
min_actuator = max_actuator = min_rate = max_rate = 0;
state_enter_ms = now;
state = new_state;
return;
}
if ((state == ATState::DEMAND_POS && max_rate < 0.01 * current.rmax_pos) ||
(state == ATState::DEMAND_NEG && min_rate > -0.01 * current.rmax_neg)) {
// we didn't get enough rate
state = ATState::IDLE;
action = Action::LOW_RATE;
min_Dmod = 1;
max_P = max_D = 0;
return;
}
if (now - state_enter_ms < 100) {
// not long enough sample
state = ATState::IDLE;
action = Action::SHORT;
min_Dmod = 1;
max_P = max_D = 0;
return;
}
// we've finished an event. calculate the single-event FF value
if (state == ATState::DEMAND_POS) {
FF_single = max_actuator / (max_rate * scaler);
} else {
FF_single = min_actuator / (min_rate * scaler);
}
// apply median filter
float FF = ff_filter.apply(FF_single);
const float old_FF = rpid.ff();
// limit size of change in FF
FF = constrain_float(FF,
old_FF*(1-AUTOTUNE_DECREASE_FF_STEP*0.01),
old_FF*(1+AUTOTUNE_INCREASE_FF_STEP*0.01));
// did the P or D components go over 15% of total actuator?
const float abs_actuator = MAX(max_actuator, fabsf(min_actuator));
const float PD_high = 0.15 * abs_actuator;
bool PD_significant = (max_P > PD_high || max_D > PD_high);
// see if we overshot
bool overshot = (state == ATState::DEMAND_POS)?
(max_rate > max_target*AUTOTUNE_OVERSHOOT):
(min_rate < min_target*AUTOTUNE_OVERSHOOT);
// adjust P and D
float D = rpid.kD();
float P = rpid.kP();
D = MAX(D, 0.0005);
P = MAX(P, 0.01);
// if the slew limiter kicked in or
if (min_Dmod < 1.0 || (overshot && PD_significant)) {
// we're overshooting or oscillating, decrease gains. We
// assume the gain that needs to be reduced is the one that
// peaked at a higher value
if (max_P < max_D) {
D *= (100 - AUTOTUNE_DECREASE_PD_STEP)*0.01;
} else {
P *= (100 - AUTOTUNE_DECREASE_PD_STEP)*0.01;
}
action = Action::LOWER_PD;
} else {
const float low_PD = 0.05 * MAX(max_actuator, fabsf(min_actuator));
// not oscillating or overshooting, increase the gains
if (max_P < low_PD) {
// P is very small, increase rapidly
P *= (100 + AUTOTUNE_INCREASE_PD_LOW_STEP)*0.01;
} else {
P *= (100 + AUTOTUNE_INCREASE_PD_STEP)*0.01;
}
if (max_D < low_PD) {
// D is very small, increase rapidly
D *= (100 + AUTOTUNE_INCREASE_PD_LOW_STEP)*0.01;
} else {
D *= (100 + AUTOTUNE_INCREASE_PD_STEP)*0.01;
}
action = Action::RAISE_PD;
}
rpid.ff().set(FF);
rpid.kP().set(P);
rpid.kD().set(D);
rpid.kI().set(P*AUTOTUNE_I_RATIO);
current.FF = FF;
current.P = P;
current.I = rpid.kI().get();
current.D = D;
Debug("FPID=(%.3f, %.3f, %.3f, %.3f)\n",
rpid.ff().get(),
rpid.kP().get(),
rpid.kI().get(),
rpid.kD().get());
// move rmax and tau towards target
update_rmax();
min_Dmod = 1;
max_P = max_D = 0;
state = new_state;
state_enter_ms = now;
}
/*
see if we should save new values
*/
void AP_AutoTune::check_save(void)
{
if (AP_HAL::millis() - last_save_ms < AUTOTUNE_SAVE_PERIOD) {
return;
}
// save the next_save values, which are the autotune value from
// the last save period. This means the pilot has
// AUTOTUNE_SAVE_PERIOD milliseconds to decide they don't like the
// gains and switch out of autotune
ATGains tmp = get_gains(current);
save_gains(next_save);
last_save = next_save;
// restore our current gains
set_gains(tmp);
// if the pilot exits autotune they get these saved values
restore = next_save;
// the next values to save will be the ones we are flying now
next_save = tmp;
last_save_ms = AP_HAL::millis();
}
/*
set a float and save a float if it has changed by more than
0.1%. This reduces the number of insignificant EEPROM writes
*/
void AP_AutoTune::save_float_if_changed(AP_Float &v, float value)
{
float old_value = v.get();
v.set(value);
if (value <= 0 || fabsf((value-old_value)/value) > 0.001f) {
v.save();
}
}
/*
set a int16 and save if changed
*/
void AP_AutoTune::save_int16_if_changed(AP_Int16 &v, int16_t value)
{
int16_t old_value = v.get();
v.set(value);
if (old_value != v.get()) {
v.save();
}
}
/*
save a set of gains
*/
void AP_AutoTune::save_gains(const ATGains &v)
{
ATGains tmp = current;
current = last_save;
save_float_if_changed(current.tau, v.tau);
save_int16_if_changed(current.rmax_pos, v.rmax_pos);
save_int16_if_changed(current.rmax_neg, v.rmax_neg);
save_float_if_changed(rpid.ff(), v.FF);
save_float_if_changed(rpid.kP(), v.P);
save_float_if_changed(rpid.kI(), v.I);
save_float_if_changed(rpid.kD(), v.D);
save_float_if_changed(rpid.kIMAX(), v.IMAX);
last_save = get_gains(current);
current = tmp;
}
/*
get gains with PID components
*/
AP_AutoTune::ATGains AP_AutoTune::get_gains(const ATGains &v)
{
ATGains ret = v;
ret.FF = rpid.ff();
ret.P = rpid.kP();
ret.I = rpid.kI();
ret.D = rpid.kD();
ret.IMAX = rpid.kIMAX();
return ret;
}
/*
set gains with PID components
*/
void AP_AutoTune::set_gains(const ATGains &v)
{
current = v;
rpid.ff().set(v.FF);
rpid.kP().set(v.P);
rpid.kI().set(v.I);
rpid.kD().set(v.D);
rpid.kIMAX().set(v.IMAX);
}
void AP_AutoTune::update_rmax(void)
{
if (current.rmax_pos == 0) {
// conservative initial value
current.rmax_pos.set(75);
}
// move by 20 deg/s per step
current.rmax_pos.set(constrain_int32(target_rmax,
current.rmax_pos.get()-20,
current.rmax_pos.get()+20));
current.rmax_neg.set(current.rmax_pos.get());
// move tau by max 15% per loop
current.tau.set(constrain_float(target_tau,
current.tau*0.85,
current.tau*1.15));
}