Ardupilot2/libraries/AC_WPNav/AC_WPNav.h
2013-04-14 10:39:26 +09:00

219 lines
11 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef AC_WPNAV_H
#define AC_WPNAV_H
#include <inttypes.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Math.h>
#include <AP_GPS.h> // ArduPilot GPS library
#include <AP_Baro.h> // ArduPilot Mega Barometer Library
#include <AC_PID.h> // PID library
#include <APM_PI.h> // PID library
#include <AP_InertialNav.h> // Inertial Navigation library
// loiter maximum velocities and accelerations
#define MAX_LOITER_POS_VELOCITY 500 // maximum velocity that our position controller will request. should be 1.5 ~ 2.0 times the pilot input's max velocity. To-Do: make consistent with maximum velocity requested by pilot input to loiter
#define MAX_LOITER_POS_ACCEL 250 // defines the velocity vs distant curve. maximum acceleration in cm/s/s that loiter position controller asks for from acceleration controller
#define MAX_LOITER_VEL_ACCEL 400 // max acceleration in cm/s that the loiter velocity controller will ask from the lower accel controller.
// should be 1.5 times larger than MAX_LOITER_POS_ACCEL.
// max acceleration = max lean angle * 980 * pi / 180. i.e. 23deg * 980 * 3.141 / 180 = 393 cm/s/s
#define MAX_LEAN_ANGLE 4500 // default maximum lean angle
#define MAX_LOITER_OVERSHOOT 531 // maximum distance (in cm) that we will allow the target loiter point to be from the current location when switching into loiter
// D0 = MAX_LOITER_POS_ACCEL/(2*Pid_P^2);
// if MAX_LOITER_POS_VELOCITY > 2*D0*Pid_P
// MAX_LOITER_OVERSHOOT = D0 + MAX_LOITER_POS_VELOCITY.^2 ./ (2*MAX_LOITER_POS_ACCEL);
// else
// MAX_LOITER_OVERSHOOT = min(200, MAX_LOITER_POS_VELOCITY/Pid_P); // to stop it being over sensitive to error
// end
#define WPNAV_WP_SPEED 500 // default horizontal speed betwen waypoints in cm/s
#define WPNAV_WP_RADIUS 200 // default waypoint radius in cm
#define WPINAV_MAX_POS_ERROR 531.25f // maximum distance (in cm) that the desired track can stray from our current location.
// D0 = MAX_LOITER_POS_ACCEL/(2*Pid_P^2);
// if WP_SPEED > 2*D0*Pid_P
// WPINAV_MAX_POS_ERROR = D0 + WP_SPEED.^2 ./ (2*MAX_LOITER_POS_ACCEL);
// else
// WPINAV_MAX_POS_ERROR = min(200, WP_SPEED/Pid_P); // to stop it being over sensitive to error
// end
// This should use the current waypoint max speed though rather than the default
#define MAX_CLIMB_VELOCITY 125 // maximum climb velocity - ToDo: pull this in from main code
#define WPINAV_MAX_ALT_ERROR 100.0f // maximum distance (in cm) that the desired track can stray from our current location.
// D0 = ALT_HOLD_ACCEL_MAX/(2*Pid_P^2);
// if g.pilot_velocity_z_max > 2*D0*Pid_P
// WPINAV_MAX_ALT_ERROR = D0 + MAX_CLIMB_VELOCITY.^2 ./ (2*ALT_HOLD_ACCEL_MAX);
// else
// WPINAV_MAX_ALT_ERROR = min(100, MAX_CLIMB_VELOCITY/Pid_P); // to stop it being over sensitive to error
// end
class AC_WPNav
{
public:
/// Constructor
AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon);
///
/// simple loiter controller
///
/// get_loiter_target - get loiter target as position vector (from home in cm)
Vector3f get_loiter_target() { return _target; }
/// set_loiter_target in cm from home
void set_loiter_target(const Vector3f& position) { _target = position; }
/// set_loiter_target - set initial loiter target based on current position and velocity
void set_loiter_target(const Vector3f& position, const Vector3f& velocity);
/// move_loiter_target - move destination using pilot input
void move_loiter_target(float control_roll, float control_pitch, float dt);
/// get_distance_to_target - get horizontal distance to loiter target in cm
float get_distance_to_target();
/// get_bearing_to_target - get bearing to loiter target in centi-degrees
int32_t get_bearing_to_target();
/// update_loiter - run the loiter controller - should be called at 10hz
void update_loiter();
/// set_angle_limit - limits maximum angle in centi-degrees the copter will lean
void set_angle_limit(int32_t lean_angle) { _lean_angle_max = lean_angle; }
/// clear_angle_limit - reset angle limits back to defaults
void clear_angle_limit() { _lean_angle_max = MAX_LEAN_ANGLE; }
/// get_angle_limit - retrieve maximum angle in centi-degrees the copter will lean
int32_t get_angle_limit() { return _lean_angle_max; }
///
/// waypoint controller
///
/// get_destination waypoint using position vector (distance from home in cm)
Vector3f get_destination() { return _destination; }
/// set_destination waypoint using position vector (distance from home in cm)
void set_destination(const Vector3f& destination);
/// set_origin_and_destination - set origin and destination waypoints using position vectors (distance from home in cm)
void set_origin_and_destination(const Vector3f& origin, const Vector3f& destination);
/// advance_target_along_track - move target location along track from origin to destination
void advance_target_along_track(float velocity_cms, float dt);
/// get_distance_to_destination - get horizontal distance to destination in cm
float get_distance_to_destination();
/// get_bearing_to_destination - get bearing to next waypoint in centi-degrees
int32_t get_bearing_to_destination();
/// reached_destination - true when we have come within RADIUS cm of the waypoint
bool reached_destination() { return _reached_destination; }
/// update_wp - update waypoint controller
void update_wpnav();
///
/// shared methods
///
/// get desired roll, pitch which should be fed into stabilize controllers
int32_t get_desired_roll() { return _desired_roll; };
int32_t get_desired_pitch() { return _desired_pitch; };
/// get_desired_alt - get desired altitude (in cm above home) from loiter or wp controller which should be fed into throttle controller
float get_desired_alt() { return _target.z; }
/// set_desired_alt - set desired altitude (in cm above home)
void set_desired_alt(float desired_alt) { _target.z = desired_alt; }
/// set_cos_sin_yaw - short-cut to save on calculations to convert from roll-pitch frame to lat-lon frame
void set_cos_sin_yaw(float cos_yaw, float sin_yaw, float cos_roll) {
_cos_yaw = cos_yaw;
_sin_yaw = sin_yaw;
_cos_roll = cos_roll;
}
/// set_climb_velocity - allows main code to pass max climb velocity to wp navigation
void set_climb_velocity(float velocity_cms) { _speedz_cms = velocity_cms; };
static const struct AP_Param::GroupInfo var_info[];
protected:
/// translate_loiter_target_movements - consumes adjustments created by move_loiter_target
void translate_loiter_target_movements(float nav_dt);
/// get_loiter_pos_lat_lon - loiter position controller
/// converts desired position provided as distance from home in lat/lon directions to desired velocity
void get_loiter_pos_lat_lon(float target_lat_from_home, float target_lon_from_home, float dt);
/// get_loiter_vel_lat_lon - loiter velocity controller
/// converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void get_loiter_vel_lat_lon(float vel_lat, float vel_lon, float dt);
/// get_loiter_accel_lat_lon - loiter acceration controller
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void get_loiter_accel_lat_lon(float accel_lat, float accel_lon);
/// get_bearing_cd - return bearing in centi-degrees between two positions
float get_bearing_cd(const Vector3f origin, const Vector3f destination);
/// reset_I - clears I terms from loiter PID controller
void reset_I();
// pointers to inertial nav library
AP_InertialNav* _inav;
// pointers to pid controllers
APM_PI* _pid_pos_lat;
APM_PI* _pid_pos_lon;
AC_PID* _pid_rate_lat;
AC_PID* _pid_rate_lon;
// parameters
AP_Float _speed_cms; // default horizontal speed in cm/s
float _speedz_cms; // max vertical climb rate in cm/s. To-Do: rename or pull this from main code
AP_Float _wp_radius_cm; // distance from a waypoint in cm that, when crossed, indicates the wp has been reached
uint32_t _last_update; // time of last update call
float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame
float _sin_yaw;
float _cos_roll;
// output from controller
int32_t _desired_roll; // fed to stabilize controllers at 50hz
int32_t _desired_pitch; // fed to stabilize controllers at 50hz
int32_t _lean_angle_max; // maximum lean angle. can we set from main code so that throttle controller can stop leans that cause copter to lose altitude
// internal variables
Vector3f _target; // loiter's target location in cm from home
Vector3f _target_vel; // loiter
Vector3f _vel_last; // previous iterations velocity in cm/s
Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP)
Vector3f _destination; // target destination in cm from home (equivalent to next_WP)
Vector3f _pos_delta_unit; // each axis's percentage of the total track from origin to destination
float _track_length; // distance in cm between origin and destination
float _track_desired; // our desired distance along the track in cm
float _distance_to_target; // distance to loiter target
float _vert_track_scale; // vertical scaling to give altitude equal weighting to position
bool _reached_destination; // true if we have reached the destination
// pilot inputs for loiter
int16_t _pilot_vel_forward_cms;
int16_t _pilot_vel_right_cms;
// To-Do: add split of fast (100hz for accel->angle) and slow (10hz for navigation)
//float _desired_accel_fwd; // updated from loiter controller at 10hz, consumed by accel->angle controller at 50hz
//float _desired_accel_rgt;
/// update - run the loiter and wpnav controllers - should be called at 100hz
//void update_100hz(void);
/// update - run the loiter and wpnav controllers - should be called at 10hz
//void update_10hz(void);
};
#endif // AC_WPNAV_H