Ardupilot2/ArduSub/control_guided.cpp
ChrisBird 0fb679b2b2 Sub: Separate max ascent and descent speeds
This is to match a change made to Copter.

It might be relevant to sub in that users may wish to have asymmetrical descent and ascent rates.

New parameters named:
PILOT_SPEED_UP (technically renamed PILOT_VELZ_MAX)
PILOT_SPEED_DN

Removed parameter PILOT_VELZ_MAX (technically renamed to PILOT_SPEED_UP).

Modes impacted:
ALT_HOLD
CIRCLE
POSHOLD

Update a section in GUIDED mode but I don't think it is ever used but update just in case.

It will use the PILOT_SPEED_UP for ascending max velocity.  For down it will check if
it is 0, if so then it will PILOT_SPEED_UP instead, if non zero it will use PILOT_SPEED_DN.
This retains current behavior and gives the flexibility to change it if desired.

The above behavior is less of a concern for Sub but to keep it consistent its been implemented it the same way.
2017-12-28 15:16:08 -05:00

583 lines
20 KiB
C++

#include "Sub.h"
/*
* Init and run calls for guided flight mode
*/
#ifndef GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM
# define GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM 500 // point nose at target if it is more than 5m away
#endif
#define GUIDED_POSVEL_TIMEOUT_MS 3000 // guided mode's position-velocity controller times out after 3seconds with no new updates
#define GUIDED_ATTITUDE_TIMEOUT_MS 1000 // guided mode's attitude controller times out after 1 second with no new updates
static Vector3f posvel_pos_target_cm;
static Vector3f posvel_vel_target_cms;
static uint32_t posvel_update_time_ms;
static uint32_t vel_update_time_ms;
struct {
uint32_t update_time_ms;
float roll_cd;
float pitch_cd;
float yaw_cd;
float climb_rate_cms;
} static guided_angle_state = {0,0.0f, 0.0f, 0.0f, 0.0f};
struct Guided_Limit {
uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked
float alt_min_cm; // lower altitude limit in cm above home (0 = no limit)
float alt_max_cm; // upper altitude limit in cm above home (0 = no limit)
float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit)
uint32_t start_time;// system time in milliseconds that control was handed to the external computer
Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit
} guided_limit;
// guided_init - initialise guided controller
bool Sub::guided_init(bool ignore_checks)
{
if (!position_ok() && !ignore_checks) {
return false;
}
// initialise yaw
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
// start in position control mode
guided_pos_control_start();
return true;
}
// initialise guided mode's position controller
void Sub::guided_pos_control_start()
{
// set to position control mode
guided_mode = Guided_WP;
// initialise waypoint and spline controller
wp_nav.wp_and_spline_init();
// initialise wpnav to stopping point at current altitude
// To-Do: set to current location if disarmed?
// To-Do: set to stopping point altitude?
Vector3f stopping_point;
stopping_point.z = inertial_nav.get_altitude();
wp_nav.get_wp_stopping_point_xy(stopping_point);
// no need to check return status because terrain data is not used
wp_nav.set_wp_destination(stopping_point, false);
// initialise yaw
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
}
// initialise guided mode's velocity controller
void Sub::guided_vel_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_Velocity;
// initialize vertical speeds and leash lengths
pos_control.set_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control.set_accel_z(g.pilot_accel_z);
// initialise velocity controller
pos_control.init_vel_controller_xyz();
}
// initialise guided mode's posvel controller
void Sub::guided_posvel_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_PosVel;
pos_control.init_xy_controller();
// set speed and acceleration from wpnav's speed and acceleration
pos_control.set_speed_xy(wp_nav.get_speed_xy());
pos_control.set_accel_xy(wp_nav.get_wp_acceleration());
pos_control.set_jerk_xy_to_default();
const Vector3f& curr_pos = inertial_nav.get_position();
const Vector3f& curr_vel = inertial_nav.get_velocity();
// set target position and velocity to current position and velocity
pos_control.set_xy_target(curr_pos.x, curr_pos.y);
pos_control.set_desired_velocity_xy(curr_vel.x, curr_vel.y);
// set vertical speed and acceleration
pos_control.set_speed_z(wp_nav.get_speed_down(), wp_nav.get_speed_up());
pos_control.set_accel_z(wp_nav.get_accel_z());
// pilot always controls yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise guided mode's angle controller
void Sub::guided_angle_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_Angle;
// set vertical speed and acceleration
pos_control.set_speed_z(wp_nav.get_speed_down(), wp_nav.get_speed_up());
pos_control.set_accel_z(wp_nav.get_accel_z());
// initialise position and desired velocity
pos_control.set_alt_target(inertial_nav.get_altitude());
pos_control.set_desired_velocity_z(inertial_nav.get_velocity_z());
// initialise targets
guided_angle_state.update_time_ms = millis();
guided_angle_state.roll_cd = ahrs.roll_sensor;
guided_angle_state.pitch_cd = ahrs.pitch_sensor;
guided_angle_state.yaw_cd = ahrs.yaw_sensor;
guided_angle_state.climb_rate_cms = 0.0f;
// pilot always controls yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// guided_set_destination - sets guided mode's target destination
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool Sub::guided_set_destination(const Vector3f& destination)
{
// ensure we are in position control mode
if (guided_mode != Guided_WP) {
guided_pos_control_start();
}
#if AC_FENCE == ENABLED
// reject destination if outside the fence
Location_Class dest_loc(destination);
if (!fence.check_destination_within_fence(dest_loc)) {
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// no need to check return status because terrain data is not used
wp_nav.set_wp_destination(destination, false);
// log target
Log_Write_GuidedTarget(guided_mode, destination, Vector3f());
return true;
}
// sets guided mode's target from a Location object
// returns false if destination could not be set (probably caused by missing terrain data)
// or if the fence is enabled and guided waypoint is outside the fence
bool Sub::guided_set_destination(const Location_Class& dest_loc)
{
// ensure we are in position control mode
if (guided_mode != Guided_WP) {
guided_pos_control_start();
}
#if AC_FENCE == ENABLED
// reject destination outside the fence.
// Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails
if (!fence.check_destination_within_fence(dest_loc)) {
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
if (!wp_nav.set_wp_destination(dest_loc)) {
// failure to set destination can only be because of missing terrain data
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// log target
Log_Write_GuidedTarget(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt),Vector3f());
return true;
}
// guided_set_velocity - sets guided mode's target velocity
void Sub::guided_set_velocity(const Vector3f& velocity)
{
// check we are in velocity control mode
if (guided_mode != Guided_Velocity) {
guided_vel_control_start();
}
vel_update_time_ms = millis();
// set position controller velocity target
pos_control.set_desired_velocity(velocity);
}
// set guided mode posvel target
bool Sub::guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity)
{
// check we are in velocity control mode
if (guided_mode != Guided_PosVel) {
guided_posvel_control_start();
}
#if AC_FENCE == ENABLED
// reject destination if outside the fence
Location_Class dest_loc(destination);
if (!fence.check_destination_within_fence(dest_loc)) {
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
posvel_update_time_ms = millis();
posvel_pos_target_cm = destination;
posvel_vel_target_cms = velocity;
pos_control.set_pos_target(posvel_pos_target_cm);
// log target
Log_Write_GuidedTarget(guided_mode, destination, velocity);
return true;
}
// set guided mode angle target
void Sub::guided_set_angle(const Quaternion &q, float climb_rate_cms)
{
// check we are in velocity control mode
if (guided_mode != Guided_Angle) {
guided_angle_control_start();
}
// convert quaternion to euler angles
q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd);
guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f;
guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f;
guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f);
guided_angle_state.climb_rate_cms = climb_rate_cms;
guided_angle_state.update_time_ms = millis();
}
// guided_run - runs the guided controller
// should be called at 100hz or more
void Sub::guided_run()
{
// call the correct auto controller
switch (guided_mode) {
case Guided_WP:
// run position controller
guided_pos_control_run();
break;
case Guided_Velocity:
// run velocity controller
guided_vel_control_run();
break;
case Guided_PosVel:
// run position-velocity controller
guided_posvel_control_run();
break;
case Guided_Angle:
// run angle controller
guided_angle_control_run();
break;
}
}
// guided_pos_control_run - runs the guided position controller
// called from guided_run
void Sub::guided_pos_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
failsafe_terrain_set_status(wp_nav.update_wpnav());
float lateral_out, forward_out;
translate_wpnav_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control.update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate, get_smoothing_gain());
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true, get_smoothing_gain());
}
}
// guided_vel_control_run - runs the guided velocity controller
// called from guided_run
void Sub::guided_vel_control_run()
{
// ifmotors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
// initialise velocity controller
pos_control.init_vel_controller_xyz();
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// set velocity to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - vel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !pos_control.get_desired_velocity().is_zero()) {
pos_control.set_desired_velocity(Vector3f(0,0,0));
}
// call velocity controller which includes z axis controller
pos_control.update_vel_controller_xyz(ekfNavVelGainScaler);
float lateral_out, forward_out;
translate_pos_control_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate, get_smoothing_gain());
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true, get_smoothing_gain());
}
}
// guided_posvel_control_run - runs the guided spline controller
// called from guided_run
void Sub::guided_posvel_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
// set target position and velocity to current position and velocity
pos_control.set_pos_target(inertial_nav.get_position());
pos_control.set_desired_velocity(Vector3f(0,0,0));
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.pilot_input) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// set velocity to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - posvel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !posvel_vel_target_cms.is_zero()) {
posvel_vel_target_cms.zero();
}
// calculate dt
float dt = pos_control.time_since_last_xy_update();
// update at poscontrol update rate
if (dt >= pos_control.get_dt_xy()) {
// sanity check dt
if (dt >= 0.2f) {
dt = 0.0f;
}
// advance position target using velocity target
posvel_pos_target_cm += posvel_vel_target_cms * dt;
// send position and velocity targets to position controller
pos_control.set_pos_target(posvel_pos_target_cm);
pos_control.set_desired_velocity_xy(posvel_vel_target_cms.x, posvel_vel_target_cms.y);
// run position controller
pos_control.update_xy_controller(AC_PosControl::XY_MODE_POS_AND_VEL_FF, ekfNavVelGainScaler, false);
}
float lateral_out, forward_out;
translate_pos_control_rp(lateral_out, forward_out);
// Send to forward/lateral outputs
motors.set_lateral(lateral_out);
motors.set_forward(forward_out);
pos_control.update_z_controller();
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate, get_smoothing_gain());
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control.input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true, get_smoothing_gain());
}
}
// guided_angle_control_run - runs the guided angle controller
// called from guided_run
void Sub::guided_angle_control_run()
{
// if motors not enabled set throttle to zero and exit immediately
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// Sub vehicles do not stabilize roll/pitch/yaw when disarmed
attitude_control.set_throttle_out_unstabilized(0.0f,true,g.throttle_filt);
pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
return;
}
// constrain desired lean angles
float roll_in = guided_angle_state.roll_cd;
float pitch_in = guided_angle_state.pitch_cd;
float total_in = norm(roll_in, pitch_in);
float angle_max = MIN(attitude_control.get_althold_lean_angle_max(), aparm.angle_max);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// wrap yaw request
float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd);
// constrain climb rate
float climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -fabsf(wp_nav.get_speed_down()), wp_nav.get_speed_up());
// check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - guided_angle_state.update_time_ms > GUIDED_ATTITUDE_TIMEOUT_MS) {
roll_in = 0.0f;
pitch_in = 0.0f;
climb_rate_cms = 0.0f;
}
// set motors to full range
motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// call attitude controller
attitude_control.input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true, get_smoothing_gain());
// call position controller
pos_control.set_alt_target_from_climb_rate_ff(climb_rate_cms, G_Dt, false);
pos_control.update_z_controller();
}
// Guided Limit code
// guided_limit_clear - clear/turn off guided limits
void Sub::guided_limit_clear()
{
guided_limit.timeout_ms = 0;
guided_limit.alt_min_cm = 0.0f;
guided_limit.alt_max_cm = 0.0f;
guided_limit.horiz_max_cm = 0.0f;
}
// guided_limit_set - set guided timeout and movement limits
void Sub::guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm)
{
guided_limit.timeout_ms = timeout_ms;
guided_limit.alt_min_cm = alt_min_cm;
guided_limit.alt_max_cm = alt_max_cm;
guided_limit.horiz_max_cm = horiz_max_cm;
}
// guided_limit_init_time_and_pos - initialise guided start time and position as reference for limit checking
// only called from AUTO mode's auto_nav_guided_start function
void Sub::guided_limit_init_time_and_pos()
{
// initialise start time
guided_limit.start_time = AP_HAL::millis();
// initialise start position from current position
guided_limit.start_pos = inertial_nav.get_position();
}
// guided_limit_check - returns true if guided mode has breached a limit
// used when guided is invoked from the NAV_GUIDED_ENABLE mission command
bool Sub::guided_limit_check()
{
// check if we have passed the timeout
if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) {
return true;
}
// get current location
const Vector3f& curr_pos = inertial_nav.get_position();
// check if we have gone below min alt
if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) {
return true;
}
// check if we have gone above max alt
if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) {
return true;
}
// check if we have gone beyond horizontal limit
if (guided_limit.horiz_max_cm > 0.0f) {
float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos, curr_pos);
if (horiz_move > guided_limit.horiz_max_cm) {
return true;
}
}
// if we got this far we must be within limits
return false;
}