Ardupilot2/libraries/AP_HAL_AVR_SITL/sitl_ins.cpp
2014-08-27 17:14:19 +10:00

191 lines
5.3 KiB
C++

/*
SITL handling
This emulates the ADS7844 ADC
Andrew Tridgell November 2011
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include "AP_HAL_AVR_SITL_Namespace.h"
#include "HAL_AVR_SITL_Class.h"
#include <AP_Math.h>
#include "../AP_Compass/AP_Compass.h"
#include "../AP_Declination/AP_Declination.h"
#include "../AP_RangeFinder/AP_RangeFinder.h"
#include "../SITL/SITL.h"
#include "Scheduler.h"
#include <AP_Math.h>
#include "../AP_ADC/AP_ADC.h"
#include <SITL_State.h>
#include <fenv.h>
using namespace AVR_SITL;
/*
convert airspeed in m/s to an airspeed sensor value
*/
uint16_t SITL_State::_airspeed_sensor(float airspeed)
{
const float airspeed_ratio = 1.9936;
const float airspeed_offset = 2013;
float airspeed_pressure, airspeed_raw;
airspeed_pressure = (airspeed*airspeed) / airspeed_ratio;
airspeed_raw = airspeed_pressure + airspeed_offset;
if (airspeed_raw/4 > 0xFFFF) {
return 0xFFFF;
}
return airspeed_raw/4;
}
float SITL_State::_gyro_drift(void)
{
if (_sitl->drift_speed == 0.0) {
return 0;
}
double period = _sitl->drift_time * 2;
double minutes = fmod(_scheduler->_micros64() / 60.0e6, period);
if (minutes < period/2) {
return minutes * ToRad(_sitl->drift_speed);
}
return (period - minutes) * ToRad(_sitl->drift_speed);
}
uint16_t SITL_State::_ground_sonar(float altitude)
{
static float home_alt = -1;
if (home_alt == -1 && altitude > 0)
home_alt = altitude;
altitude = altitude - home_alt;
float voltage = 5.0f;
if (fabsf(_sitl->state.rollDeg) < 90 &&
fabsf(_sitl->state.pitchDeg) < 90) {
// adjust for apparent altitude with roll
altitude /= cos(radians(_sitl->state.rollDeg)) * cos(radians(_sitl->state.pitchDeg));
altitude += _sitl->sonar_noise * _rand_float();
// Altitude in in m, scaler in meters/volt
voltage = altitude / _sitl->sonar_scale;
voltage = constrain_float(voltage, 0, 5.0f);
if (_sitl->sonar_glitch >= (_rand_float() + 1.0f)/2.0f) {
voltage = 5.0f;
}
}
return 1023*(voltage / 5.0f);
}
/*
setup the INS input channels with new input
Note that this uses roll, pitch and yaw only as inputs. The
simulator rollrates are instantaneous, whereas we need to use
average rates to cope with slow update rates.
inputs are in degrees
phi - roll
theta - pitch
psi - true heading
alpha - angle of attack
beta - side slip
phidot - roll rate
thetadot - pitch rate
psidot - yaw rate
v_north - north velocity in local/body frame
v_east - east velocity in local/body frame
v_down - down velocity in local/body frame
A_X_pilot - X accel in body frame
A_Y_pilot - Y accel in body frame
A_Z_pilot - Z accel in body frame
Note: doubles on high prec. stuff are preserved until the last moment
*/
void SITL_State::_update_ins(float roll, float pitch, float yaw, // Relative to earth
double rollRate, double pitchRate,double yawRate, // Local to plane
double xAccel, double yAccel, double zAccel, // Local to plane
float airspeed, float altitude)
{
double p, q, r;
if (_ins == NULL) {
// no inertial sensor in this sketch
return;
}
if (_sitl->float_exception) {
feenableexcept(FE_INVALID | FE_OVERFLOW);
} else {
feclearexcept(FE_INVALID | FE_OVERFLOW);
}
SITL::convert_body_frame(roll, pitch,
rollRate, pitchRate, yawRate,
&p, &q, &r);
// minimum noise levels are 2 bits, but averaged over many
// samples, giving around 0.01 m/s/s
float accel_noise = 0.01;
// minimum gyro noise is also less than 1 bit
float gyro_noise = ToRad(0.04);
if (_motors_on) {
// add extra noise when the motors are on
accel_noise += _sitl->accel_noise;
gyro_noise += ToRad(_sitl->gyro_noise);
}
// get accel bias (add only to first accelerometer)
Vector3f accel_bias = _sitl->accel_bias.get();
float xAccel1 = xAccel + accel_noise * _rand_float() + accel_bias.x;
float yAccel1 = yAccel + accel_noise * _rand_float() + accel_bias.y;
float zAccel1 = zAccel + accel_noise * _rand_float() + accel_bias.z;
float xAccel2 = xAccel + accel_noise * _rand_float();
float yAccel2 = yAccel + accel_noise * _rand_float();
float zAccel2 = zAccel + accel_noise * _rand_float();
if (fabs(_sitl->accel_fail) > 1.0e-6) {
xAccel1 = _sitl->accel_fail;
yAccel1 = _sitl->accel_fail;
zAccel1 = _sitl->accel_fail;
}
_ins->set_accel(0, Vector3f(xAccel1, yAccel1, zAccel1) + _ins->get_accel_offsets(0));
_ins->set_accel(1, Vector3f(xAccel2, yAccel2, zAccel2) + _ins->get_accel_offsets(1));
p += _gyro_drift();
q += _gyro_drift();
r += _gyro_drift();
float p1 = p + gyro_noise * _rand_float();
float q1 = q + gyro_noise * _rand_float();
float r1 = r + gyro_noise * _rand_float();
float p2 = p + gyro_noise * _rand_float();
float q2 = q + gyro_noise * _rand_float();
float r2 = r + gyro_noise * _rand_float();
_ins->set_gyro(0, Vector3f(p1, q1, r1) + _ins->get_gyro_offsets(0));
_ins->set_gyro(1, Vector3f(p2, q2, r2) + _ins->get_gyro_offsets(1));
sonar_pin_value = _ground_sonar(altitude);
airspeed_pin_value = _airspeed_sensor(airspeed + (_sitl->aspd_noise * _rand_float()));
}
#endif