Ardupilot2/libraries/SITL/SIM_Webots_Python.cpp
Ian d358ca1b32 SITL: Add Webots 2023a support and examples
The various C Webots controllers are replaced by a single Python controller
- More readable (in my opinion)
- Does not require compilation
- Easily modifiable to run user code
- Can be blackboxed and configured via arguments when designing a robot model
- Optionally provides the ability to stream camera images over TCP
- Generalizable to copters and rovers (and probably more)
- Supports multi-vehicle simulation (including of multiple types)
- Requires no non-standard libraries (neither does current)

Higher fidelity example worlds
- Iris quadcopter demo world similar to gazebo
- Crazyflie quadcopter demo world (crazyflie models baked into webots)
- Pioneer3at rover demo world (pioneer models baked into webots)
2023-01-22 18:19:38 +11:00

173 lines
5.3 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulator connection for Webots 2023a
*/
#include "SIM_Webots_Python.h"
#if HAL_SIM_WEBOTSPYTHON_ENABLED
#include <stdio.h>
#include <errno.h>
namespace SITL {
WebotsPython::WebotsPython(const char *frame_str) :
Aircraft(frame_str),
last_timestamp(0),
socket_sitl{true}{
// disable time sync and sensor smoothing to allow for faster than realtime simulation
use_time_sync = false;
use_smoothing = false;
printf("Starting SITL Webots\n");
}
/*
Create and set in/out socket
*/
void WebotsPython::set_interface_ports(const char* address, const int port_in, const int port_out)
{
// try to bind to a specific port so that if we restart ArduPilot
// Webots keeps sending us packets. Not strictly necessary but
// useful for debugging
if (!socket_sitl.bind("0.0.0.0", port_in)) {
fprintf(stderr, "SITL: socket in bind failed on sim in : %d - %s\n", port_in, strerror(errno));
fprintf(stderr, "Aborting launch...\n");
exit(1);
}
printf("Bind %s:%d for SITL in\n", "127.0.0.1", port_in);
socket_sitl.reuseaddress();
socket_sitl.set_blocking(false);
_webots_address = address;
_webots_port = port_out;
printf("Setting Webots interface to %s:%d \n", _webots_address, _webots_port);
}
/*
Decode and send SITL outputs to FDM aka Webots (scaled to be 0-1 instead of 1000-2000)
*/
void WebotsPython::send_servos(const struct sitl_input &input)
{
servo_packet pkt;
for (unsigned i = 0; i < 16; ++i){
pkt.motor_speed[i] = (input.servos[i]-1000) / 1000.0f;
}
socket_sitl.sendto(&pkt, sizeof(pkt), _webots_address, _webots_port);
}
/*
Receive sensor data from Webots (the Flight Dynamics Model)
*/
void WebotsPython::recv_fdm(const struct sitl_input &input)
{
fdm_packet pkt;
/*
we re-send the servo packet every 0.1 seconds until we get a
reply. This allows us to cope with some packet loss to the FDM
*/
while (socket_sitl.recv(&pkt, sizeof(pkt), 100) != sizeof(pkt)) {
send_servos(input);
// Reset the timestamp after a long disconnection, also catch webots reset
if (get_wall_time_us() > last_wall_time_us + WEBOTS_TIMEOUT_US) {
last_timestamp = 0;
}
}
const double deltat = pkt.timestamp - last_timestamp; // in seconds
if (deltat < 0) { // don't use old packet
time_now_us += 1;
return;
}
// get imu stuff
accel_body = Vector3f(static_cast<float>(pkt.imu_linear_acceleration_xyz[0]),
static_cast<float>(pkt.imu_linear_acceleration_xyz[1]),
static_cast<float>(pkt.imu_linear_acceleration_xyz[2]));
gyro = Vector3f(static_cast<float>(pkt.imu_angular_velocity_rpy[0]),
static_cast<float>(pkt.imu_angular_velocity_rpy[1]),
static_cast<float>(pkt.imu_angular_velocity_rpy[2]));
// compute dcm from imu orientation
dcm.from_euler(static_cast<float>(pkt.imu_orientation_rpy[0]),
static_cast<float>(pkt.imu_orientation_rpy[1]),
static_cast<float>(pkt.imu_orientation_rpy[2]));
velocity_ef = Vector3f(static_cast<float>(pkt.velocity_xyz[0]),
static_cast<float>(pkt.velocity_xyz[1]),
static_cast<float>(pkt.velocity_xyz[2]));
position = Vector3d(pkt.position_xyz[0],
pkt.position_xyz[1],
pkt.position_xyz[2]);
position.xy() += origin.get_distance_NE_double(home);
// auto-adjust to simulation frame rate
time_now_us += static_cast<uint64_t>(deltat * 1.0e6);
if (deltat < 0.01 && deltat > 0) {
adjust_frame_time(static_cast<float>(1.0/deltat));
}
last_timestamp = pkt.timestamp;
}
/*
Drain remaining data on the socket to prevent phase lag
*/
void WebotsPython::drain_sockets()
{
const uint16_t buflen = 1024;
char buf[buflen];
ssize_t received;
errno = 0;
do {
received = socket_sitl.recv(buf, buflen, 0);
if (received < 0) {
if (errno != EAGAIN && errno != EWOULDBLOCK && errno != 0) {
fprintf(stderr, "error recv on socket in: %s \n",
strerror(errno));
}
} else {
// fprintf(stderr, "received from control socket: %s\n", buf);
}
} while (received > 0);
}
/*
Update the Webots simulation by one time step
*/
void WebotsPython::update(const struct sitl_input &input)
{
send_servos(input);
recv_fdm(input);
update_position();
time_advance();
// update magnetic field
update_mag_field_bf();
drain_sockets();
}
} // namespace SITL
#endif // HAL_SIM_WEBOTSPYTHON_ENABLED