2bb6846d47
it's not needed and will slow compilation down
1216 lines
63 KiB
C++
1216 lines
63 KiB
C++
/*
|
|
24 state EKF based on the derivation in https://github.com/priseborough/
|
|
InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/
|
|
GenerateNavFilterEquations.m
|
|
|
|
Converted from Matlab to C++ by Paul Riseborough
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#pragma once
|
|
|
|
#if !defined(HAL_DEBUG_BUILD) || !HAL_DEBUG_BUILD
|
|
#pragma GCC optimize("O2")
|
|
#endif
|
|
|
|
#include <AP_Common/Location.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_Math/vectorN.h>
|
|
#include <AP_NavEKF/AP_NavEKF_core_common.h>
|
|
#include <AP_NavEKF/EKF_Buffer.h>
|
|
#include <AP_RangeFinder/AP_RangeFinder.h>
|
|
#include <AP_Beacon/AP_Beacon_config.h>
|
|
|
|
#include "AP_NavEKF/EKFGSF_yaw.h"
|
|
|
|
// GPS pre-flight check bit locations
|
|
#define MASK_GPS_NSATS (1<<0)
|
|
#define MASK_GPS_HDOP (1<<1)
|
|
#define MASK_GPS_SPD_ERR (1<<2)
|
|
#define MASK_GPS_POS_ERR (1<<3)
|
|
#define MASK_GPS_YAW_ERR (1<<4)
|
|
#define MASK_GPS_POS_DRIFT (1<<5)
|
|
#define MASK_GPS_VERT_SPD (1<<6)
|
|
#define MASK_GPS_HORIZ_SPD (1<<7)
|
|
|
|
// active height source
|
|
#define HGT_SOURCE_BARO 0
|
|
#define HGT_SOURCE_RNG 1
|
|
#define HGT_SOURCE_GPS 2
|
|
#define HGT_SOURCE_BCN 3
|
|
#define HGT_SOURCE_EXTNAV 4
|
|
|
|
// target EKF update time step
|
|
#define EKF_TARGET_DT 0.01f
|
|
|
|
// mag fusion final reset altitude
|
|
#define EKF2_MAG_FINAL_RESET_ALT 2.5f
|
|
|
|
// maximum number of yaw resets due to detected magnetic anomaly allowed per flight
|
|
#define MAG_ANOMALY_RESET_MAX 2
|
|
|
|
// number of seconds a request to reset the yaw to the GSF estimate is active before it times out
|
|
#define YAW_RESET_TO_GSF_TIMEOUT_MS 5000
|
|
|
|
// limit on horizontal position states
|
|
#if HAL_WITH_EKF_DOUBLE
|
|
#define EK2_POSXY_STATE_LIMIT 50.0e6
|
|
#else
|
|
#define EK2_POSXY_STATE_LIMIT 1.0e6
|
|
#endif
|
|
|
|
// maximum number of downward facing rangefinder instances available
|
|
#if AP_RANGEFINDER_ENABLED
|
|
#if RANGEFINDER_MAX_INSTANCES > 1
|
|
#define DOWNWARD_RANGEFINDER_MAX_INSTANCES 2
|
|
#else
|
|
#define DOWNWARD_RANGEFINDER_MAX_INSTANCES 1
|
|
#endif
|
|
#endif
|
|
|
|
class AP_AHRS;
|
|
|
|
class NavEKF2_core : public NavEKF_core_common
|
|
{
|
|
public:
|
|
// Constructor
|
|
NavEKF2_core(class NavEKF2 *_frontend);
|
|
|
|
// setup this core backend
|
|
bool setup_core(uint8_t _imu_index, uint8_t _core_index);
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
bool InitialiseFilterBootstrap(void);
|
|
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
// The predict flag is set true when a new prediction cycle can be started
|
|
void UpdateFilter(bool predict);
|
|
|
|
// Check basic filter health metrics and return a consolidated health status
|
|
bool healthy(void) const;
|
|
|
|
// Return a consolidated error score where higher numbers are less healthy
|
|
// Intended to be used by the front-end to determine which is the primary EKF
|
|
ftype errorScore(void) const;
|
|
|
|
// Write the last calculated NE position relative to the reference point (m).
|
|
// If a calculated solution is not available, use the best available data and return false
|
|
// If false returned, do not use for flight control
|
|
bool getPosNE(Vector2f &posNE) const;
|
|
|
|
// Write the last calculated D position relative to the reference point (m).
|
|
// If a calculated solution is not available, use the best available data and return false
|
|
// If false returned, do not use for flight control
|
|
bool getPosD(float &posD) const;
|
|
|
|
// return NED velocity in m/s
|
|
void getVelNED(Vector3f &vel) const;
|
|
|
|
// return estimate of true airspeed vector in body frame in m/s
|
|
// returns false if estimate is unavailable
|
|
bool getAirSpdVec(Vector3f &vel) const;
|
|
|
|
// Return the rate of change of vertical position in the down direction (dPosD/dt) in m/s
|
|
// This can be different to the z component of the EKF velocity state because it will fluctuate with height errors and corrections in the EKF
|
|
// but will always be kinematically consistent with the z component of the EKF position state
|
|
float getPosDownDerivative(void) const;
|
|
|
|
// return body axis gyro bias estimates in rad/sec
|
|
void getGyroBias(Vector3f &gyroBias) const;
|
|
|
|
// return body axis gyro scale factor error as a percentage
|
|
void getGyroScaleErrorPercentage(Vector3f &gyroScale) const;
|
|
|
|
// reset body axis gyro bias estimates
|
|
void resetGyroBias(void);
|
|
|
|
// Resets the baro so that it reads zero at the current height
|
|
// Resets the EKF height to zero
|
|
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
|
|
// Returns true if the height datum reset has been performed
|
|
// If using a range finder for height no reset is performed and it returns false
|
|
bool resetHeightDatum(void);
|
|
|
|
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
|
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
|
void getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const;
|
|
|
|
// return the Z-accel bias estimate in m/s^2
|
|
void getAccelZBias(float &zbias) const;
|
|
|
|
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
|
|
void getWind(Vector3f &wind) const;
|
|
|
|
// return earth magnetic field estimates in measurement units / 1000
|
|
void getMagNED(Vector3f &magNED) const;
|
|
|
|
// return body magnetic field estimates in measurement units / 1000
|
|
void getMagXYZ(Vector3f &magXYZ) const;
|
|
|
|
// Return estimated magnetometer offsets
|
|
// Return true if magnetometer offsets are valid
|
|
bool getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const;
|
|
|
|
// Return the last calculated latitude, longitude and height in WGS-84
|
|
// If a calculated location isn't available, return a raw GPS measurement
|
|
// The status will return true if a calculation or raw measurement is available
|
|
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
|
bool getLLH(Location &loc) const;
|
|
|
|
// return the latitude and longitude and height used to set the NED origin
|
|
// All NED positions calculated by the filter are relative to this location
|
|
// Returns false if the origin has not been set
|
|
bool getOriginLLH(Location &loc) const;
|
|
|
|
// set the latitude and longitude and height used to set the NED origin
|
|
// All NED positions calculated by the filter will be relative to this location
|
|
// returns false if absolute aiding and GPS is being used or if the origin is already set
|
|
bool setOriginLLH(const Location &loc);
|
|
|
|
// return estimated height above ground level
|
|
// return false if ground height is not being estimated.
|
|
bool getHAGL(float &HAGL) const;
|
|
|
|
// return the Euler roll, pitch and yaw angle in radians
|
|
void getEulerAngles(Vector3f &eulers) const;
|
|
|
|
// return the transformation matrix from XYZ (body) to NED axes
|
|
void getRotationBodyToNED(Matrix3f &mat) const;
|
|
|
|
// return the quaternions defining the rotation from NED to XYZ (body) axes
|
|
void getQuaternion(Quaternion &quat) const;
|
|
|
|
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
|
|
bool getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const;
|
|
|
|
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
|
|
bool getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const;
|
|
|
|
// should we use the compass? This is public so it can be used for
|
|
// reporting via ahrs.use_compass()
|
|
bool use_compass(void) const;
|
|
|
|
// write the raw optical flow measurements
|
|
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
|
|
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
|
|
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
|
|
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
|
|
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
|
|
// posOffset is the XYZ flow sensor position in the body frame in m
|
|
// heightOverride is the fixed height of the sensor above ground in m, when on rover vehicles. 0 if not used
|
|
void writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset, float heightOverride);
|
|
|
|
/*
|
|
Returns the following data for debugging range beacon fusion
|
|
ID : beacon identifier
|
|
rng : measured range to beacon (m)
|
|
innov : range innovation (m)
|
|
innovVar : innovation variance (m^2)
|
|
testRatio : innovation consistency test ratio
|
|
beaconPosNED : beacon NED position (m)
|
|
*/
|
|
bool getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED, float &offsetHigh, float &offsetLow);
|
|
|
|
// Set to true if the terrain underneath is stable enough to be used as a height reference
|
|
// in combination with a range finder. Set to false if the terrain underneath the vehicle
|
|
// cannot be used as a height reference. Use to prevent range finder operation otherwise
|
|
// enabled by the combination of EK2_RNG_AID_HGT and EK2_RNG_USE_SPD parameters.
|
|
void setTerrainHgtStable(bool val);
|
|
|
|
/*
|
|
return the filter fault status as a bitmasked integer
|
|
0 = quaternions are NaN
|
|
1 = velocities are NaN
|
|
2 = badly conditioned X magnetometer fusion
|
|
3 = badly conditioned Y magnetometer fusion
|
|
4 = badly conditioned Z magnetometer fusion
|
|
5 = badly conditioned airspeed fusion
|
|
6 = badly conditioned synthetic sideslip fusion
|
|
7 = filter is not initialised
|
|
*/
|
|
void getFilterFaults(uint16_t &faults) const;
|
|
|
|
/*
|
|
return filter gps quality check status
|
|
*/
|
|
void getFilterGpsStatus(nav_gps_status &status) const;
|
|
|
|
/*
|
|
Return a filter function status that indicates:
|
|
Which outputs are valid
|
|
If the filter has detected takeoff
|
|
If the filter has activated the mode that mitigates against ground effect static pressure errors
|
|
If GPS data is being used
|
|
*/
|
|
void getFilterStatus(nav_filter_status &status) const;
|
|
|
|
// send an EKF_STATUS_REPORT message to GCS
|
|
void send_status_report(class GCS_MAVLINK &link) const;
|
|
|
|
// provides the height limit to be observed by the control loops
|
|
// returns false if no height limiting is required
|
|
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
|
bool getHeightControlLimit(float &height) const;
|
|
|
|
// return the amount of yaw angle change due to the last yaw angle reset in radians
|
|
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
|
|
uint32_t getLastYawResetAngle(float &yawAng) const;
|
|
|
|
// return the amount of NE position change due to the last position reset in metres
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastPosNorthEastReset(Vector2f &pos) const;
|
|
|
|
// return the amount of D position change due to the last position reset in metres
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastPosDownReset(float &posD) const;
|
|
|
|
// return the amount of NE velocity change due to the last velocity reset in metres/sec
|
|
// returns the time of the last reset or 0 if no reset has ever occurred
|
|
uint32_t getLastVelNorthEastReset(Vector2f &vel) const;
|
|
|
|
// report any reason for why the backend is refusing to initialise
|
|
const char *prearm_failure_reason(void) const;
|
|
|
|
// report the number of frames lapsed since the last state prediction
|
|
// this is used by other instances to level load
|
|
uint8_t getFramesSincePredict(void) const;
|
|
|
|
// get the IMU index. For now we return the gyro index, as that is most
|
|
// critical for use by other subsystems.
|
|
uint8_t getIMUIndex(void) const { return gyro_index_active; }
|
|
|
|
/*
|
|
* Write position and quaternion data from an external navigation system
|
|
*
|
|
* pos : position in the RH navigation frame. Frame is assumed to be NED (m)
|
|
* quat : quaternion desribing the rotation from navigation frame to body frame
|
|
* posErr : 1-sigma spherical position error (m)
|
|
* angErr : 1-sigma spherical angle error (rad)
|
|
* timeStamp_ms : system time the measurement was taken, not the time it was received (mSec)
|
|
* delay_ms : average delay of external nav system measurements relative to inertial measurements
|
|
* resetTime_ms : system time of the last position reset request (mSec)
|
|
*
|
|
* Sensor offsets are pulled directly from the AP_VisualOdom library
|
|
*
|
|
*/
|
|
void writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms);
|
|
|
|
/*
|
|
* Write velocity data from an external navigation system
|
|
* vel : velocity in NED (m)
|
|
* err : velocity error (m/s)
|
|
* timeStamp_ms : system time the measurement was taken, not the time it was received (mSec)
|
|
* delay_ms : average delay of external nav system measurements relative to inertial measurements
|
|
*/
|
|
void writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms);
|
|
|
|
// return true when external nav data is also being used as a yaw observation
|
|
bool isExtNavUsedForYaw(void) const;
|
|
|
|
// Writes the default equivalent airspeed in m/s to be used in forward flight if a measured airspeed is required and not available.
|
|
void writeDefaultAirSpeed(float airspeed);
|
|
|
|
// request a reset the yaw to the EKF-GSF value
|
|
void EKFGSF_requestYawReset();
|
|
|
|
// return true if we are tilt aligned
|
|
bool have_aligned_tilt(void) const {
|
|
return tiltAlignComplete;
|
|
}
|
|
|
|
// return true if we are yaw aligned
|
|
bool have_aligned_yaw(void) const {
|
|
return yawAlignComplete;
|
|
}
|
|
|
|
void Log_Write(uint64_t time_us);
|
|
|
|
// get a yaw estimator instance
|
|
const EKFGSF_yaw *get_yawEstimator(void) const { return yawEstimator; }
|
|
|
|
private:
|
|
EKFGSF_yaw *yawEstimator;
|
|
class AP_DAL &dal;
|
|
|
|
// Reference to the global EKF frontend for parameters
|
|
class NavEKF2 *frontend;
|
|
uint8_t imu_index; // preferred IMU index
|
|
uint8_t gyro_index_active; // active gyro index (in case preferred fails)
|
|
uint8_t accel_index_active; // active accel index (in case preferred fails)
|
|
uint8_t core_index;
|
|
uint8_t imu_buffer_length;
|
|
|
|
#if MATH_CHECK_INDEXES
|
|
typedef VectorN<ftype,2> Vector2;
|
|
typedef VectorN<ftype,3> Vector3;
|
|
typedef VectorN<ftype,4> Vector4;
|
|
typedef VectorN<ftype,5> Vector5;
|
|
typedef VectorN<ftype,6> Vector6;
|
|
typedef VectorN<ftype,7> Vector7;
|
|
typedef VectorN<ftype,8> Vector8;
|
|
typedef VectorN<ftype,9> Vector9;
|
|
typedef VectorN<ftype,10> Vector10;
|
|
typedef VectorN<ftype,11> Vector11;
|
|
typedef VectorN<ftype,13> Vector13;
|
|
typedef VectorN<ftype,14> Vector14;
|
|
typedef VectorN<ftype,15> Vector15;
|
|
typedef VectorN<ftype,22> Vector22;
|
|
typedef VectorN<ftype,23> Vector23;
|
|
typedef VectorN<ftype,24> Vector24;
|
|
typedef VectorN<ftype,25> Vector25;
|
|
typedef VectorN<ftype,31> Vector31;
|
|
typedef VectorN<VectorN<ftype,3>,3> Matrix3;
|
|
typedef VectorN<VectorN<ftype,24>,24> Matrix24;
|
|
typedef VectorN<VectorN<ftype,34>,50> Matrix34_50;
|
|
typedef VectorN<uint32_t,50> Vector_u32_50;
|
|
#else
|
|
typedef ftype Vector2[2];
|
|
typedef ftype Vector3[3];
|
|
typedef ftype Vector4[4];
|
|
typedef ftype Vector5[5];
|
|
typedef ftype Vector6[6];
|
|
typedef ftype Vector7[7];
|
|
typedef ftype Vector8[8];
|
|
typedef ftype Vector9[9];
|
|
typedef ftype Vector10[10];
|
|
typedef ftype Vector11[11];
|
|
typedef ftype Vector13[13];
|
|
typedef ftype Vector14[14];
|
|
typedef ftype Vector15[15];
|
|
typedef ftype Vector22[22];
|
|
typedef ftype Vector23[23];
|
|
typedef ftype Vector24[24];
|
|
typedef ftype Vector25[25];
|
|
typedef ftype Matrix3[3][3];
|
|
typedef ftype Matrix24[24][24];
|
|
typedef ftype Matrix34_50[34][50];
|
|
typedef uint32_t Vector_u32_50[50];
|
|
#endif
|
|
|
|
// the states are available in two forms, either as a Vector31, or
|
|
// broken down as individual elements. Both are equivalent (same
|
|
// memory)
|
|
struct state_elements {
|
|
Vector3F angErr; // 0..2
|
|
Vector3F velocity; // 3..5
|
|
Vector3F position; // 6..8
|
|
Vector3F gyro_bias; // 9..11
|
|
Vector3F gyro_scale; // 12..14
|
|
ftype accel_zbias; // 15
|
|
Vector3F earth_magfield; // 16..18
|
|
Vector3F body_magfield; // 19..21
|
|
Vector2F wind_vel; // 22..23
|
|
QuaternionF quat; // 24..27
|
|
};
|
|
|
|
union {
|
|
Vector28 statesArray;
|
|
struct state_elements stateStruct;
|
|
};
|
|
|
|
struct output_elements {
|
|
QuaternionF quat; // 0..3
|
|
Vector3F velocity; // 4..6
|
|
Vector3F position; // 7..9
|
|
};
|
|
|
|
struct imu_elements {
|
|
Vector3F delAng; // 0..2
|
|
Vector3F delVel; // 3..5
|
|
ftype delAngDT; // 6
|
|
ftype delVelDT; // 7
|
|
uint32_t time_ms; // 8
|
|
uint8_t gyro_index;
|
|
uint8_t accel_index;
|
|
};
|
|
|
|
struct gps_elements : EKF_obs_element_t {
|
|
Vector2F pos;
|
|
ftype hgt;
|
|
Vector3F vel;
|
|
uint8_t sensor_idx;
|
|
};
|
|
|
|
struct mag_elements : EKF_obs_element_t {
|
|
Vector3F mag;
|
|
};
|
|
|
|
struct baro_elements : EKF_obs_element_t {
|
|
ftype hgt;
|
|
};
|
|
|
|
struct range_elements : EKF_obs_element_t {
|
|
ftype rng;
|
|
uint8_t sensor_idx;
|
|
};
|
|
|
|
struct rng_bcn_elements : EKF_obs_element_t {
|
|
ftype rng; // range measurement to each beacon (m)
|
|
Vector3F beacon_posNED; // NED position of the beacon (m)
|
|
ftype rngErr; // range measurement error 1-std (m)
|
|
uint8_t beacon_ID; // beacon identification number
|
|
};
|
|
|
|
struct tas_elements : EKF_obs_element_t {
|
|
ftype tas;
|
|
};
|
|
|
|
struct of_elements : EKF_obs_element_t {
|
|
Vector2F flowRadXY;
|
|
Vector2F flowRadXYcomp;
|
|
Vector3F bodyRadXYZ;
|
|
Vector3F body_offset;
|
|
float heightOverride;
|
|
};
|
|
|
|
struct ext_nav_elements : EKF_obs_element_t {
|
|
Vector3F pos; // XYZ position measured in a RH navigation frame (m)
|
|
QuaternionF quat; // quaternion describing the rotation from navigation to body frame
|
|
ftype posErr; // spherical poition measurement error 1-std (m)
|
|
ftype angErr; // spherical angular measurement error 1-std (rad)
|
|
bool posReset; // true when the position measurement has been reset
|
|
};
|
|
|
|
// bias estimates for the IMUs that are enabled but not being used
|
|
// by this core.
|
|
struct {
|
|
Vector3F gyro_bias;
|
|
Vector3F gyro_scale;
|
|
ftype accel_zbias;
|
|
} inactiveBias[INS_MAX_INSTANCES];
|
|
|
|
struct ext_nav_vel_elements : EKF_obs_element_t {
|
|
Vector3F vel; // velocity in NED (m)
|
|
ftype err; // velocity measurement error (m/s)
|
|
};
|
|
|
|
// update the navigation filter status
|
|
void updateFilterStatus(void);
|
|
|
|
// update the quaternion, velocity and position states using IMU measurements
|
|
void UpdateStrapdownEquationsNED();
|
|
|
|
// calculate the predicted state covariance matrix
|
|
void CovariancePrediction();
|
|
|
|
// force symmetry on the state covariance matrix
|
|
void ForceSymmetry();
|
|
|
|
// copy covariances across from covariance prediction calculation and fix numerical errors
|
|
void CopyCovariances();
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix
|
|
void ConstrainVariances();
|
|
|
|
// constrain states
|
|
void ConstrainStates();
|
|
|
|
// constrain earth field using WMM tables
|
|
void MagTableConstrain(void);
|
|
|
|
// fuse selected position, velocity and height measurements
|
|
void FuseVelPosNED();
|
|
|
|
// fuse range beacon measurements
|
|
void FuseRngBcn();
|
|
|
|
// use range beacon measurements to calculate a static position
|
|
void FuseRngBcnStatic();
|
|
|
|
// calculate the offset from EKF vertical position datum to the range beacon system datum
|
|
void CalcRangeBeaconPosDownOffset(ftype obsVar, Vector3F &vehiclePosNED, bool aligning);
|
|
|
|
// fuse magnetometer measurements
|
|
void FuseMagnetometer();
|
|
|
|
// fuse true airspeed measurements
|
|
void FuseAirspeed();
|
|
|
|
// fuse synthetic sideslip measurement of zero
|
|
void FuseSideslip();
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last);
|
|
|
|
// Reset the stored output history to current data
|
|
void StoreOutputReset(void);
|
|
|
|
// Reset the stored output quaternion history to current EKF state
|
|
void StoreQuatReset(void);
|
|
|
|
// Rotate the stored output quaternion history through a quaternion rotation
|
|
void StoreQuatRotate(const QuaternionF &deltaQuat);
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void calcEarthRateNED(Vector3F &omega, int32_t latitude) const;
|
|
|
|
// initialise the covariance matrix
|
|
void CovarianceInit();
|
|
|
|
// helper functions for readIMUData
|
|
bool readDeltaVelocity(uint8_t ins_index, Vector3F &dVel, ftype &dVel_dt);
|
|
bool readDeltaAngle(uint8_t ins_index, Vector3F &dAng, ftype &dAng_dt);
|
|
|
|
// helper functions for correcting IMU data
|
|
void correctDeltaAngle(Vector3F &delAng, ftype delAngDT, uint8_t gyro_index);
|
|
void correctDeltaVelocity(Vector3F &delVel, ftype delVelDT, uint8_t accel_index);
|
|
|
|
// update IMU delta angle and delta velocity measurements
|
|
void readIMUData();
|
|
|
|
// update estimate of inactive bias states
|
|
void learnInactiveBiases();
|
|
|
|
// check for new valid GPS data and update stored measurement if available
|
|
void readGpsData();
|
|
|
|
// check for new altitude measurement data and update stored measurement if available
|
|
void readBaroData();
|
|
|
|
// check for new magnetometer data and update store measurements if available
|
|
void readMagData();
|
|
|
|
// try changing compasses on compass failure or timeout
|
|
void tryChangeCompass(void);
|
|
|
|
// check for new airspeed data and update stored measurements if available
|
|
void readAirSpdData();
|
|
|
|
// check for new range beacon data and update stored measurements if available
|
|
void readRngBcnData();
|
|
|
|
// determine when to perform fusion of GPS position and velocity measurements
|
|
void SelectVelPosFusion();
|
|
|
|
// determine when to perform fusion of range measurements take relative to a beacon at a known NED position
|
|
void SelectRngBcnFusion();
|
|
|
|
// determine when to perform fusion of magnetometer measurements
|
|
void SelectMagFusion();
|
|
|
|
// determine when to perform fusion of true airspeed measurements
|
|
void SelectTasFusion();
|
|
|
|
// determine when to perform fusion of synthetic sideslp measurements
|
|
void SelectBetaFusion();
|
|
|
|
// force alignment of the yaw angle using GPS velocity data
|
|
void realignYawGPS();
|
|
|
|
// initialise the earth magnetic field states using declination and current attitude and magnetometer measurements
|
|
// and return attitude quaternion
|
|
QuaternionF calcQuatAndFieldStates(ftype roll, ftype pitch);
|
|
|
|
// zero stored variables
|
|
void InitialiseVariables();
|
|
|
|
void InitialiseVariablesMag();
|
|
|
|
// reset the horizontal position states uing the last GPS measurement
|
|
void ResetPosition(void);
|
|
|
|
// reset the stateStruct's NE position to the specified position
|
|
void ResetPositionNE(ftype posN, ftype posE);
|
|
|
|
// reset velocity states using the last GPS measurement
|
|
void ResetVelocity(void);
|
|
|
|
// reset the vertical position state using the last height measurement
|
|
void ResetHeight(void);
|
|
|
|
// reset the stateStruct's D position
|
|
void ResetPositionD(ftype posD);
|
|
|
|
// return true if we should use the airspeed sensor
|
|
bool useAirspeed(void) const;
|
|
|
|
// return true if the vehicle code has requested the filter to be ready for flight
|
|
bool readyToUseGPS(void) const;
|
|
|
|
// return true if the filter to be ready to use the beacon range measurements
|
|
bool readyToUseRangeBeacon(void) const;
|
|
|
|
// return true if the filter to be ready to use external nav data
|
|
bool readyToUseExtNav(void) const;
|
|
|
|
// Check for filter divergence
|
|
void checkDivergence(void);
|
|
|
|
// Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2
|
|
void calcIMU_Weighting(ftype K1, ftype K2);
|
|
|
|
// return true if optical flow data is available
|
|
bool optFlowDataPresent(void) const;
|
|
|
|
// return true if we should use the range finder sensor
|
|
bool useRngFinder(void) const;
|
|
|
|
// determine when to perform fusion of optical flow measurements
|
|
void SelectFlowFusion();
|
|
|
|
// Estimate terrain offset using a single state EKF
|
|
void EstimateTerrainOffset();
|
|
|
|
// fuse optical flow measurements into the main filter
|
|
void FuseOptFlow();
|
|
|
|
// Control filter mode changes
|
|
void controlFilterModes();
|
|
|
|
// Determine if we are flying or on the ground
|
|
void detectFlight();
|
|
|
|
// Set inertial navigaton aiding mode
|
|
void setAidingMode();
|
|
|
|
// Determine if learning of wind and magnetic field will be enabled and set corresponding indexing limits to
|
|
// avoid unnecessary operations
|
|
void setWindMagStateLearningMode();
|
|
|
|
// Check the alignmnent status of the tilt attitude
|
|
// Used during initial bootstrap alignment of the filter
|
|
void checkAttitudeAlignmentStatus();
|
|
|
|
// Control reset of yaw and magnetic field states
|
|
void controlMagYawReset();
|
|
|
|
// set the latitude and longitude and height used to set the NED origin
|
|
// All NED positions calculated by the filter will be relative to this location
|
|
// returns false if the origin has already been set
|
|
bool setOrigin(const Location &loc);
|
|
|
|
// Assess GPS data quality and set gpsGoodToAlign if good enough to align the EKF
|
|
void calcGpsGoodToAlign(void);
|
|
|
|
// return true and set the class variable true if the delta angle bias has been learned
|
|
bool checkGyroCalStatus(void);
|
|
|
|
// update inflight calculaton that determines if GPS data is good enough for reliable navigation
|
|
void calcGpsGoodForFlight(void);
|
|
|
|
#if AP_RANGEFINDER_ENABLED
|
|
// Read the range finder and take new measurements if available
|
|
// Apply a median filter to range finder data
|
|
void readRangeFinder();
|
|
#endif
|
|
|
|
// check if the vehicle has taken off during optical flow navigation by looking at inertial and range finder data
|
|
void detectOptFlowTakeoff(void);
|
|
|
|
// align the NE earth magnetic field states with the published declination
|
|
void alignMagStateDeclination();
|
|
|
|
// Fuse compass measurements using a simple declination observation (doesn't require magnetic field states)
|
|
void fuseEulerYaw();
|
|
|
|
// Fuse declination angle to keep earth field declination from changing when we don't have earth relative observations.
|
|
// Input is 1-sigma uncertainty in published declination
|
|
void FuseDeclination(ftype declErr);
|
|
|
|
// return magnetic declination in radians
|
|
ftype MagDeclination(void) const;
|
|
|
|
// Propagate PVA solution forward from the fusion time horizon to the current time horizon
|
|
// using a simple observer
|
|
void calcOutputStates();
|
|
|
|
// calculate a filtered offset between baro height measurement and EKF height estimate
|
|
void calcFiltBaroOffset();
|
|
|
|
// correct the height of the EKF origin to be consistent with GPS Data using a Bayes filter.
|
|
void correctEkfOriginHeight();
|
|
|
|
// Select height data to be fused from the available baro, range finder and GPS sources
|
|
void selectHeightForFusion();
|
|
|
|
// zero attitude state covariances, but preserve variances
|
|
void zeroAttCovOnly();
|
|
|
|
// record a yaw reset event
|
|
void recordYawReset();
|
|
|
|
// record a magnetic field state reset event
|
|
void recordMagReset();
|
|
|
|
// effective value of MAG_CAL
|
|
uint8_t effective_magCal(void) const;
|
|
|
|
// update timing statistics structure
|
|
void updateTimingStatistics(void);
|
|
|
|
// correct gps data for antenna position
|
|
void CorrectGPSForAntennaOffset(gps_elements &gps_data) const;
|
|
|
|
// correct external navigation earth-frame position using sensor body-frame offset
|
|
void CorrectExtNavForSensorOffset(Vector3F &ext_position) const;
|
|
|
|
// correct external navigation earth-frame velocity using sensor body-frame offset
|
|
void CorrectExtNavVelForSensorOffset(Vector3F &ext_velocity) const;
|
|
|
|
// Runs the IMU prediction step for an independent GSF yaw estimator algorithm
|
|
// that uses IMU, GPS horizontal velocity and optionally true airspeed data.
|
|
void runYawEstimatorPrediction(void);
|
|
|
|
// Run the GPS velocity correction step for the GSF yaw estimator and use the
|
|
// yaw estimate to reset the main EKF yaw if requested
|
|
void runYawEstimatorCorrection(void);
|
|
|
|
// reset the quaternion states using the supplied yaw angle, maintaining the previous roll and pitch
|
|
// also reset the body to nav frame rotation matrix
|
|
// reset the quaternion state covariances using the supplied yaw variance
|
|
// yaw : new yaw angle (rad)
|
|
// yaw_variance : variance of new yaw angle (rad^2)
|
|
// isDeltaYaw : true when the yaw should be added to the existing yaw angle
|
|
void resetQuatStateYawOnly(ftype yaw, ftype yawVariance, bool isDeltaYaw);
|
|
|
|
// attempt to reset the yaw to the EKF-GSF value
|
|
// returns false if unsuccessful
|
|
bool EKFGSF_resetMainFilterYaw();
|
|
|
|
// Length of FIFO buffers used for non-IMU sensor data.
|
|
// Must be larger than the time period defined by IMU_BUFFER_LENGTH
|
|
static const uint32_t OBS_BUFFER_LENGTH = 5;
|
|
static const uint32_t FLOW_BUFFER_LENGTH = 15;
|
|
static const uint32_t EXTNAV_BUFFER_LENGTH = 15;
|
|
|
|
// Variables
|
|
bool statesInitialised; // boolean true when filter states have been initialised
|
|
bool magHealth; // boolean true if magnetometer has passed innovation consistency check
|
|
bool velTimeout; // boolean true if velocity measurements have failed innovation consistency check and timed out
|
|
bool posTimeout; // boolean true if position measurements have failed innovation consistency check and timed out
|
|
bool hgtTimeout; // boolean true if height measurements have failed innovation consistency check and timed out
|
|
bool magTimeout; // boolean true if magnetometer measurements have failed for too long and have timed out
|
|
bool tasTimeout; // boolean true if true airspeed measurements have failed for too long and have timed out
|
|
bool badIMUdata; // boolean true if the bad IMU data is detected
|
|
|
|
ftype gpsNoiseScaler; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts
|
|
Matrix24 P; // covariance matrix
|
|
EKF_IMU_buffer_t<imu_elements> storedIMU; // IMU data buffer
|
|
EKF_obs_buffer_t<gps_elements> storedGPS; // GPS data buffer
|
|
EKF_obs_buffer_t<mag_elements> storedMag; // Magnetometer data buffer
|
|
EKF_obs_buffer_t<baro_elements> storedBaro; // Baro data buffer
|
|
EKF_obs_buffer_t<tas_elements> storedTAS; // TAS data buffer
|
|
EKF_obs_buffer_t<range_elements> storedRange; // Range finder data buffer
|
|
EKF_IMU_buffer_t<output_elements> storedOutput;// output state buffer
|
|
Matrix3F prevTnb; // previous nav to body transformation used for INS earth rotation compensation
|
|
ftype accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
|
|
ftype accNavMagHoriz; // magnitude of navigation accel in horizontal plane (m/s^2)
|
|
Vector3F earthRateNED; // earths angular rate vector in NED (rad/s)
|
|
ftype dtIMUavg; // expected time between IMU measurements (sec)
|
|
ftype dtEkfAvg; // expected time between EKF updates (sec)
|
|
ftype dt; // time lapsed since the last covariance prediction (sec)
|
|
ftype hgtRate; // state for rate of change of height filter
|
|
bool onGround; // true when the flight vehicle is definitely on the ground
|
|
bool prevOnGround; // value of onGround from previous frame - used to detect transition
|
|
bool inFlight; // true when the vehicle is definitely flying
|
|
bool prevInFlight; // value inFlight from previous frame - used to detect transition
|
|
bool manoeuvring; // boolean true when the flight vehicle is performing horizontal changes in velocity
|
|
uint32_t airborneDetectTime_ms; // last time flight movement was detected
|
|
Vector6 innovVelPos; // innovation output for a group of measurements
|
|
Vector6 varInnovVelPos; // innovation variance output for a group of measurements
|
|
Vector6 velPosObs; // observations for combined velocity and positon group of measurements (3x1 m , 3x1 m/s)
|
|
bool fuseVelData; // this boolean causes the velNED measurements to be fused
|
|
bool fusePosData; // this boolean causes the posNE measurements to be fused
|
|
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
|
|
Vector3F innovMag; // innovation output from fusion of X,Y,Z compass measurements
|
|
Vector3F varInnovMag; // innovation variance output from fusion of X,Y,Z compass measurements
|
|
ftype innovVtas; // innovation output from fusion of airspeed measurements
|
|
ftype varInnovVtas; // innovation variance output from fusion of airspeed measurements
|
|
bool magFusePerformed; // boolean set to true when magnetometer fusion has been performed in that time step
|
|
uint32_t prevTasStep_ms; // time stamp of last TAS fusion step
|
|
uint32_t prevBetaStep_ms; // time stamp of last synthetic sideslip fusion step
|
|
uint32_t lastMagUpdate_us; // last time compass was updated in usec
|
|
uint32_t lastMagRead_ms; // last time compass data was successfully read
|
|
Vector3F velDotNED; // rate of change of velocity in NED frame
|
|
Vector3F velDotNEDfilt; // low pass filtered velDotNED
|
|
uint32_t imuSampleTime_ms; // time that the last IMU value was taken
|
|
bool tasDataToFuse; // true when new airspeed data is waiting to be fused
|
|
uint32_t lastBaroReceived_ms; // time last time we received baro height data
|
|
uint16_t hgtRetryTime_ms; // time allowed without use of height measurements before a height timeout is declared
|
|
uint32_t lastVelPassTime_ms; // time stamp when GPS velocity measurement last passed innovation consistency check (msec)
|
|
uint32_t lastPosPassTime_ms; // time stamp when GPS position measurement last passed innovation consistency check (msec)
|
|
uint32_t lastHgtPassTime_ms; // time stamp when height measurement last passed innovation consistency check (msec)
|
|
uint32_t lastTasPassTime_ms; // time stamp when airspeed measurement last passed innovation consistency check (msec)
|
|
uint32_t lastTasFailTime_ms; // time stamp when airspeed measurement last failed innovation consistency check (msec)
|
|
uint32_t lastTimeGpsReceived_ms;// last time we received GPS data
|
|
uint32_t timeAtLastAuxEKF_ms; // last time the auxiliary filter was run to fuse range or optical flow measurements
|
|
uint32_t lastHealthyMagTime_ms; // time the magnetometer was last declared healthy
|
|
bool allMagSensorsFailed; // true if all magnetometer sensors have timed out on this flight and we are no longer using magnetometer data
|
|
uint32_t lastYawTime_ms; // time stamp when yaw observation was last fused (msec)
|
|
uint32_t ekfStartTime_ms; // time the EKF was started (msec)
|
|
Vector2F lastKnownPositionNE; // last known position
|
|
ftype velTestRatio; // sum of squares of GPS velocity innovation divided by fail threshold
|
|
ftype posTestRatio; // sum of squares of GPS position innovation divided by fail threshold
|
|
ftype hgtTestRatio; // sum of squares of baro height innovation divided by fail threshold
|
|
Vector3F magTestRatio; // sum of squares of magnetometer innovations divided by fail threshold
|
|
ftype tasTestRatio; // sum of squares of true airspeed innovation divided by fail threshold
|
|
ftype defaultAirSpeed; // default equivalent airspeed in m/s to be used if the measurement is unavailable. Do not use if not positive.
|
|
bool inhibitWindStates; // true when wind states and covariances are to remain constant
|
|
bool inhibitMagStates; // true when magnetic field states and covariances are to remain constant
|
|
bool lastInhibitMagStates; // previous inhibitMagStates
|
|
bool needMagBodyVarReset; // we need to reset mag body variances at next CovariancePrediction
|
|
bool gpsNotAvailable; // bool true when valid GPS data is not available
|
|
uint8_t last_gps_idx; // sensor ID of the GPS receiver used for the last fusion or reset
|
|
Location EKF_origin; // LLH origin of the NED axis system
|
|
bool validOrigin; // true when the EKF origin is valid
|
|
ftype gpsSpdAccuracy; // estimated speed accuracy in m/s returned by the GPS receiver
|
|
ftype gpsPosAccuracy; // estimated position accuracy in m returned by the GPS receiver
|
|
ftype gpsHgtAccuracy; // estimated height accuracy in m returned by the GPS receiver
|
|
uint32_t lastGpsVelFail_ms; // time of last GPS vertical velocity consistency check fail
|
|
uint32_t lastGpsVelPass_ms; // time of last GPS vertical velocity consistency check pass
|
|
uint32_t lastGpsAidBadTime_ms; // time in msec gps aiding was last detected to be bad
|
|
ftype posDownAtTakeoff; // flight vehicle vertical position sampled at transition from on-ground to in-air and used as a reference (m)
|
|
bool useGpsVertVel; // true if GPS vertical velocity should be used
|
|
ftype yawResetAngle; // Change in yaw angle due to last in-flight yaw reset in radians. A positive value means the yaw angle has increased.
|
|
uint32_t lastYawReset_ms; // System time at which the last yaw reset occurred. Returned by getLastYawResetAngle
|
|
Vector3F tiltErrVec; // Vector of most recent attitude error correction from Vel,Pos fusion
|
|
ftype tiltErrFilt; // Filtered tilt error metric
|
|
bool tiltAlignComplete; // true when tilt alignment is complete
|
|
bool yawAlignComplete; // true when yaw alignment is complete
|
|
bool magStateInitComplete; // true when the magnetic field sttes have been initialised
|
|
uint8_t stateIndexLim; // Max state index used during matrix and array operations
|
|
imu_elements imuDataDelayed; // IMU data at the fusion time horizon
|
|
imu_elements imuDataNew; // IMU data at the current time horizon
|
|
imu_elements imuDataDownSampledNew; // IMU data at the current time horizon that has been downsampled to a 100Hz rate
|
|
QuaternionF imuQuatDownSampleNew; // Quaternion obtained by rotating through the IMU delta angles since the start of the current down sampled frame
|
|
baro_elements baroDataNew; // Baro data at the current time horizon
|
|
baro_elements baroDataDelayed; // Baro data at the fusion time horizon
|
|
range_elements rangeDataNew; // Range finder data at the current time horizon
|
|
range_elements rangeDataDelayed;// Range finder data at the fusion time horizon
|
|
tas_elements tasDataNew; // TAS data at the current time horizon
|
|
tas_elements tasDataDelayed; // TAS data at the fusion time horizon
|
|
mag_elements magDataDelayed; // Magnetometer data at the fusion time horizon
|
|
gps_elements gpsDataNew; // GPS data at the current time horizon
|
|
gps_elements gpsDataDelayed; // GPS data at the fusion time horizon
|
|
output_elements outputDataNew; // output state data at the current time step
|
|
output_elements outputDataDelayed; // output state data at the current time step
|
|
Vector3F delAngCorrection; // correction applied to delta angles used by output observer to track the EKF
|
|
Vector3F velErrintegral; // integral of output predictor NED velocity tracking error (m)
|
|
Vector3F posErrintegral; // integral of output predictor NED position tracking error (m.sec)
|
|
ftype innovYaw; // compass yaw angle innovation (rad)
|
|
uint32_t timeTasReceived_ms; // time last TAS data was received (msec)
|
|
bool gpsGoodToAlign; // true when the GPS quality can be used to initialise the navigation system
|
|
uint32_t magYawResetTimer_ms; // timer in msec used to track how long good magnetometer data is failing innovation consistency checks
|
|
bool consistentMagData; // true when the magnetometers are passing consistency checks
|
|
bool motorsArmed; // true when the motors have been armed
|
|
bool prevMotorsArmed; // value of motorsArmed from previous frame
|
|
bool posVelFusionDelayed; // true when the position and velocity fusion has been delayed
|
|
bool optFlowFusionDelayed; // true when the optical flow fusion has been delayed
|
|
bool airSpdFusionDelayed; // true when the air speed fusion has been delayed
|
|
bool sideSlipFusionDelayed; // true when the sideslip fusion has been delayed
|
|
Vector3F lastMagOffsets; // Last magnetometer offsets from COMPASS_ parameters. Used to detect parameter changes.
|
|
bool lastMagOffsetsValid; // True when lastMagOffsets has been initialized
|
|
Vector2F posResetNE; // Change in North/East position due to last in-flight reset in metres. Returned by getLastPosNorthEastReset
|
|
uint32_t lastPosReset_ms; // System time at which the last position reset occurred. Returned by getLastPosNorthEastReset
|
|
Vector2F velResetNE; // Change in North/East velocity due to last in-flight reset in metres/sec. Returned by getLastVelNorthEastReset
|
|
uint32_t lastVelReset_ms; // System time at which the last velocity reset occurred. Returned by getLastVelNorthEastReset
|
|
ftype posResetD; // Change in Down position due to last in-flight reset in metres. Returned by getLastPosDowntReset
|
|
uint32_t lastPosResetD_ms; // System time at which the last position reset occurred. Returned by getLastPosDownReset
|
|
ftype yawTestRatio; // square of magnetometer yaw angle innovation divided by fail threshold
|
|
QuaternionF prevQuatMagReset; // Quaternion from the last time the magnetic field state reset condition test was performed
|
|
ftype hgtInnovFiltState; // state used for fitering of the height innovations used for pre-flight checks
|
|
uint8_t magSelectIndex; // Index of the magnetometer that is being used by the EKF
|
|
bool runUpdates; // boolean true when the EKF updates can be run
|
|
uint32_t framesSincePredict; // number of frames lapsed since EKF instance did a state prediction
|
|
bool startPredictEnabled; // boolean true when the frontend has given permission to start a new state prediciton cycele
|
|
uint8_t localFilterTimeStep_ms; // average number of msec between filter updates
|
|
ftype posDownObsNoise; // observation noise variance on the vertical position used by the state and covariance update step (m^2)
|
|
Vector3F delAngCorrected; // corrected IMU delta angle vector at the EKF time horizon (rad)
|
|
Vector3F delVelCorrected; // corrected IMU delta velocity vector at the EKF time horizon (m/s)
|
|
bool magFieldLearned; // true when the magnetic field has been learned
|
|
uint32_t wasLearningCompass_ms; // time when we were last waiting for compass learn to complete
|
|
Vector3F earthMagFieldVar; // NED earth mag field variances for last learned field (mGauss^2)
|
|
Vector3F bodyMagFieldVar; // XYZ body mag field variances for last learned field (mGauss^2)
|
|
bool delAngBiasLearned; // true when the gyro bias has been learned
|
|
nav_filter_status filterStatus; // contains the status of various filter outputs
|
|
ftype ekfOriginHgtVar; // Variance of the EKF WGS-84 origin height estimate (m^2)
|
|
double ekfGpsRefHgt; // floating point representation of the WGS-84 reference height used to convert GPS height to local height (m)
|
|
uint32_t lastOriginHgtTime_ms; // last time the ekf's WGS-84 origin height was corrected
|
|
Vector3F outputTrackError; // attitude (rad), velocity (m/s) and position (m) tracking error magnitudes from the output observer
|
|
Vector3F velOffsetNED; // This adds to the earth frame velocity estimate at the IMU to give the velocity at the body origin (m/s)
|
|
Vector3F posOffsetNED; // This adds to the earth frame position estimate at the IMU to give the position at the body origin (m)
|
|
|
|
// variables used to calculate a vertical velocity that is kinematically consistent with the verical position
|
|
struct {
|
|
ftype pos;
|
|
ftype vel;
|
|
ftype acc;
|
|
} vertCompFiltState;
|
|
|
|
// variables used by the pre-initialisation GPS checks
|
|
Location gpsloc_prev; // LLH location of previous GPS measurement
|
|
uint32_t lastPreAlignGpsCheckTime_ms; // last time in msec the GPS quality was checked during pre alignment checks
|
|
ftype gpsDriftNE; // amount of drift detected in the GPS position during pre-flight GPs checks
|
|
ftype gpsVertVelFilt; // amount of filterred vertical GPS velocity detected durng pre-flight GPS checks
|
|
ftype gpsHorizVelFilt; // amount of filtered horizontal GPS velocity detected during pre-flight GPS checks
|
|
|
|
// variable used by the in-flight GPS quality check
|
|
bool gpsSpdAccPass; // true when reported GPS speed accuracy passes in-flight checks
|
|
bool ekfInnovationsPass; // true when GPS innovations pass in-flight checks
|
|
ftype sAccFilterState1; // state variable for LPF applid to reported GPS speed accuracy
|
|
ftype sAccFilterState2; // state variable for peak hold filter applied to reported GPS speed
|
|
uint32_t lastGpsCheckTime_ms; // last time in msec the GPS quality was checked
|
|
uint32_t lastInnovPassTime_ms; // last time in msec the GPS innovations passed
|
|
uint32_t lastInnovFailTime_ms; // last time in msec the GPS innovations failed
|
|
bool gpsAccuracyGood; // true when the GPS accuracy is considered to be good enough for safe flight.
|
|
|
|
// variables added for optical flow fusion
|
|
EKF_obs_buffer_t<of_elements> storedOF; // OF data buffer
|
|
of_elements ofDataNew; // OF data at the current time horizon
|
|
of_elements ofDataDelayed; // OF data at the fusion time horizon
|
|
bool flowDataToFuse; // true when optical flow data is ready for fusion
|
|
bool flowDataValid; // true while optical flow data is still fresh
|
|
Vector2F auxFlowObsInnov; // optical flow rate innovation from 1-state terrain offset estimator
|
|
uint32_t flowValidMeaTime_ms; // time stamp from latest valid flow measurement (msec)
|
|
uint32_t rngValidMeaTime_ms; // time stamp from latest valid range measurement (msec)
|
|
uint32_t flowMeaTime_ms; // time stamp from latest flow measurement (msec)
|
|
uint32_t gndHgtValidTime_ms; // time stamp from last terrain offset state update (msec)
|
|
Matrix3F Tbn_flow; // transformation matrix from body to nav axes at the middle of the optical flow sample period
|
|
Vector2 varInnovOptFlow; // optical flow innovations variances (rad/sec)^2
|
|
Vector2 innovOptFlow; // optical flow LOS innovations (rad/sec)
|
|
ftype Popt; // Optical flow terrain height state covariance (m^2)
|
|
ftype terrainState; // terrain position state (m)
|
|
ftype prevPosN; // north position at last measurement
|
|
ftype prevPosE; // east position at last measurement
|
|
ftype varInnovRng; // range finder observation innovation variance (m^2)
|
|
ftype innovRng; // range finder observation innovation (m)
|
|
ftype hgtMea; // height measurement derived from either baro, gps or range finder data (m)
|
|
bool inhibitGndState; // true when the terrain position state is to remain constant
|
|
uint32_t prevFlowFuseTime_ms; // time both flow measurement components passed their innovation consistency checks
|
|
Vector2 flowTestRatio; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail
|
|
Vector2F auxFlowTestRatio; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator
|
|
ftype R_LOS; // variance of optical flow rate measurements (rad/sec)^2
|
|
ftype auxRngTestRatio; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail
|
|
Vector2F flowGyroBias; // bias error of optical flow sensor gyro output
|
|
bool rangeDataToFuse; // true when valid range finder height data has arrived at the fusion time horizon.
|
|
bool baroDataToFuse; // true when valid baro height finder data has arrived at the fusion time horizon.
|
|
bool gpsDataToFuse; // true when valid GPS data has arrived at the fusion time horizon.
|
|
bool magDataToFuse; // true when valid magnetometer data has arrived at the fusion time horizon
|
|
enum AidingMode {
|
|
AID_ABSOLUTE=0, // GPS or some other form of absolute position reference aiding is being used (optical flow may also be used in parallel) so position estimates are absolute.
|
|
AID_NONE=1, // no aiding is being used so only attitude and height estimates are available. Either constVelMode or constPosMode must be used to constrain tilt drift.
|
|
AID_RELATIVE=2, // only optical flow aiding is being used so position estimates will be relative
|
|
};
|
|
AidingMode PV_AidingMode; // Defines the preferred mode for aiding of velocity and position estimates from the INS
|
|
AidingMode PV_AidingModePrev; // Value of PV_AidingMode from the previous frame - used to detect transitions
|
|
bool gndOffsetValid; // true when the ground offset state can still be considered valid
|
|
Vector3F delAngBodyOF; // bias corrected delta angle of the vehicle IMU measured summed across the time since the last OF measurement
|
|
ftype delTimeOF; // time that delAngBodyOF is summed across
|
|
Vector3F accelPosOffset; // position of IMU accelerometer unit in body frame (m)
|
|
|
|
|
|
// Range finder
|
|
ftype baroHgtOffset; // offset applied when when switching to use of Baro height
|
|
ftype rngOnGnd; // Expected range finder reading in metres when vehicle is on ground
|
|
uint32_t lastRngMeasTime_ms; // Timestamp of last range measurement
|
|
bool terrainHgtStable; // true when the terrain height is stable enough to be used as a height reference
|
|
#if AP_RANGEFINDER_ENABLED
|
|
ftype storedRngMeas[DOWNWARD_RANGEFINDER_MAX_INSTANCES][3]; // Ringbuffer of stored range measurements for dual range sensors
|
|
uint32_t storedRngMeasTime_ms[DOWNWARD_RANGEFINDER_MAX_INSTANCES][3]; // Ringbuffers of stored range measurement times for dual range sensors
|
|
uint8_t rngMeasIndex[DOWNWARD_RANGEFINDER_MAX_INSTANCES]; // Current range measurement ringbuffer index for dual range sensors
|
|
#endif
|
|
|
|
// Range Beacon Sensor Fusion
|
|
EKF_obs_buffer_t<rng_bcn_elements> storedRangeBeacon; // Beacon range buffer
|
|
rng_bcn_elements rngBcnDataNew; // Range beacon data at the current time horizon
|
|
rng_bcn_elements rngBcnDataDelayed; // Range beacon data at the fusion time horizon
|
|
uint32_t lastRngBcnPassTime_ms; // time stamp when the range beacon measurement last passed innvovation consistency checks (msec)
|
|
ftype rngBcnTestRatio; // Innovation test ratio for range beacon measurements
|
|
bool rngBcnHealth; // boolean true if range beacon measurements have passed innovation consistency check
|
|
bool rngBcnTimeout; // boolean true if range beacon measurements have faled innovation consistency checks for too long
|
|
ftype varInnovRngBcn; // range beacon observation innovation variance (m^2)
|
|
ftype innovRngBcn; // range beacon observation innovation (m)
|
|
uint32_t lastTimeRngBcn_ms[10]; // last time we received a range beacon measurement (msec)
|
|
#if AP_BEACON_ENABLED
|
|
bool rngBcnDataToFuse; // true when there is new range beacon data to fuse
|
|
#else
|
|
const bool rngBcnDataToFuse = false; // true when there is new range beacon data to fuse
|
|
#endif
|
|
Vector3F beaconVehiclePosNED; // NED position estimate from the beacon system (NED)
|
|
ftype beaconVehiclePosErr; // estimated position error from the beacon system (m)
|
|
uint32_t rngBcnLast3DmeasTime_ms; // last time the beacon system returned a 3D fix (msec)
|
|
bool rngBcnGoodToAlign; // true when the range beacon systems 3D fix can be used to align the filter
|
|
uint8_t lastRngBcnChecked; // index of the last range beacon checked for data
|
|
Vector3F receiverPos; // receiver NED position (m) - alignment 3 state filter
|
|
ftype receiverPosCov[3][3]; // Receiver position covariance (m^2) - alignment 3 state filter (
|
|
bool rngBcnAlignmentStarted; // True when the initial position alignment using range measurements has started
|
|
bool rngBcnAlignmentCompleted; // True when the initial position alignment using range measurements has finished
|
|
uint8_t lastBeaconIndex; // Range beacon index last read - used during initialisation of the 3-state filter
|
|
Vector3F rngBcnPosSum; // Sum of range beacon NED position (m) - used during initialisation of the 3-state filter
|
|
uint8_t numBcnMeas; // Number of beacon measurements - used during initialisation of the 3-state filter
|
|
ftype rngSum; // Sum of range measurements (m) - used during initialisation of the 3-state filter
|
|
uint8_t N_beacons; // Number of range beacons in use
|
|
ftype maxBcnPosD; // maximum position of all beacons in the down direction (m)
|
|
ftype minBcnPosD; // minimum position of all beacons in the down direction (m)
|
|
ftype bcnPosOffset; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m)
|
|
|
|
ftype bcnPosOffsetMax; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m)
|
|
ftype bcnPosOffsetMaxVar; // Variance of the bcnPosOffsetHigh state (m)
|
|
ftype OffsetMaxInnovFilt; // Filtered magnitude of the range innovations using bcnPosOffsetHigh
|
|
|
|
ftype bcnPosOffsetMin; // Vertical position offset of the beacon constellation origin relative to the EKF origin (m)
|
|
ftype bcnPosOffsetMinVar; // Variance of the bcnPosoffset state (m)
|
|
ftype OffsetMinInnovFilt; // Filtered magnitude of the range innovations using bcnPosOffsetLow
|
|
|
|
// Range Beacon Fusion Debug Reporting
|
|
uint8_t rngBcnFuseDataReportIndex;// index of range beacon fusion data last reported
|
|
struct rngBcnFusionReport_t {
|
|
ftype rng; // measured range to beacon (m)
|
|
ftype innov; // range innovation (m)
|
|
ftype innovVar; // innovation variance (m^2)
|
|
ftype testRatio; // innovation consistency test ratio
|
|
Vector3F beaconPosNED; // beacon NED position
|
|
} rngBcnFusionReport[10];
|
|
|
|
// height source selection logic
|
|
uint8_t activeHgtSource; // integer defining active height source
|
|
|
|
// Movement detector
|
|
bool takeOffDetected; // true when takeoff for optical flow navigation has been detected
|
|
ftype rngAtStartOfFlight; // range finder measurement at start of flight
|
|
uint32_t timeAtArming_ms; // time in msec that the vehicle armed
|
|
|
|
// baro ground effect
|
|
ftype meaHgtAtTakeOff; // height measured at commencement of takeoff
|
|
|
|
// control of post takeoff magnetic field and heading resets
|
|
bool finalInflightYawInit; // true when the final post takeoff initialisation of yaw angle has been performed
|
|
bool finalInflightMagInit; // true when the final post takeoff initialisation of magnetic field states been performed
|
|
bool magStateResetRequest; // true if magnetic field states need to be reset using the magneteomter measurements
|
|
bool magYawResetRequest; // true if the vehicle yaw and magnetic field states need to be reset using the magnetometer measurements
|
|
bool gpsYawResetRequest; // true if the vehicle yaw needs to be reset to the GPS course
|
|
ftype posDownAtLastMagReset; // vertical position last time the mag states were reset (m)
|
|
ftype yawInnovAtLastMagReset; // magnetic yaw innovation last time the yaw and mag field states were reset (rad)
|
|
QuaternionF quatAtLastMagReset; // quaternion states last time the mag states were reset
|
|
uint8_t magYawAnomallyCount; // Number of times the yaw has been reset due to a magnetic anomaly during initial ascent
|
|
|
|
// external navigation fusion
|
|
EKF_obs_buffer_t<ext_nav_elements> storedExtNav; // external navigation data buffer
|
|
ext_nav_elements extNavDataNew; // External nav data at the current time horizon
|
|
ext_nav_elements extNavDataDelayed; // External nav at the fusion time horizon
|
|
uint32_t extNavMeasTime_ms; // time external measurements were accepted for input to the data buffer (msec)
|
|
uint32_t extNavLastPosResetTime_ms; // last time the external nav systen performed a position reset (msec)
|
|
uint32_t lastExtNavPassTime_ms; // time stamp when external nav position measurement last passed innovation consistency check (msec)
|
|
bool extNavDataToFuse; // true when there is new external nav data to fuse
|
|
bool extNavUsedForYaw; // true when the external nav data is also being used as a yaw observation
|
|
bool extNavUsedForPos; // true when the external nav data is being used as a position reference.
|
|
bool extNavYawResetRequest; // true when a reset of vehicle yaw using the external nav data is requested
|
|
|
|
EKF_obs_buffer_t<ext_nav_vel_elements> storedExtNavVel; // external navigation velocity data buffer
|
|
ext_nav_vel_elements extNavVelNew; // external navigation velocity data at the current time horizon
|
|
ext_nav_vel_elements extNavVelDelayed; // external navigation velocity data at the fusion time horizon
|
|
uint32_t extNavVelMeasTime_ms; // time external navigation velocity measurements were accepted for input to the data buffer (msec)
|
|
bool extNavVelToFuse; // true when there is new external navigation velocity to fuse
|
|
bool useExtNavVel; // true external navigation velocity should be used
|
|
|
|
// flags indicating severe numerical errors in innovation variance calculation for different fusion operations
|
|
struct {
|
|
bool bad_xmag:1;
|
|
bool bad_ymag:1;
|
|
bool bad_zmag:1;
|
|
bool bad_airspeed:1;
|
|
bool bad_sideslip:1;
|
|
bool bad_nvel:1;
|
|
bool bad_evel:1;
|
|
bool bad_dvel:1;
|
|
bool bad_npos:1;
|
|
bool bad_epos:1;
|
|
bool bad_dpos:1;
|
|
bool bad_yaw:1;
|
|
bool bad_decl:1;
|
|
bool bad_xflow:1;
|
|
bool bad_yflow:1;
|
|
bool bad_rngbcn:1;
|
|
} faultStatus;
|
|
|
|
// flags indicating which GPS quality checks are failing
|
|
struct {
|
|
bool bad_sAcc:1;
|
|
bool bad_hAcc:1;
|
|
bool bad_vAcc:1;
|
|
bool bad_yaw:1;
|
|
bool bad_sats:1;
|
|
bool bad_VZ:1;
|
|
bool bad_horiz_drift:1;
|
|
bool bad_hdop:1;
|
|
bool bad_vert_vel:1;
|
|
bool bad_fix:1;
|
|
bool bad_horiz_vel:1;
|
|
} gpsCheckStatus;
|
|
|
|
// states held by magnetomter fusion across time steps
|
|
// magnetometer X,Y,Z measurements are fused across three time steps
|
|
// to level computational load as this is an expensive operation
|
|
struct {
|
|
ftype q0;
|
|
ftype q1;
|
|
ftype q2;
|
|
ftype q3;
|
|
ftype magN;
|
|
ftype magE;
|
|
ftype magD;
|
|
ftype magXbias;
|
|
ftype magYbias;
|
|
ftype magZbias;
|
|
Matrix3F DCM;
|
|
Vector3F MagPred;
|
|
ftype R_MAG;
|
|
Vector9 SH_MAG;
|
|
} mag_state;
|
|
|
|
// string representing last reason for prearm failure
|
|
char prearm_fail_string[41];
|
|
|
|
// earth field from WMM tables
|
|
bool have_table_earth_field; // true when we have initialised table_earth_field_ga
|
|
Vector3F table_earth_field_ga; // earth field from WMM tables
|
|
ftype table_declination; // declination in radians from the tables
|
|
|
|
// timing statistics
|
|
struct ekf_timing timing;
|
|
|
|
// when was attitude filter status last non-zero?
|
|
uint32_t last_filter_ok_ms;
|
|
|
|
// should we assume zero sideslip?
|
|
bool assume_zero_sideslip(void) const;
|
|
|
|
// vehicle specific initial gyro bias uncertainty
|
|
ftype InitialGyroBiasUncertainty(void) const;
|
|
|
|
// The following declarations are used to control when the main navigation filter resets it's yaw to the estimate provided by the GSF
|
|
uint32_t EKFGSF_yaw_reset_ms; // timestamp of last emergency yaw reset (uSec)
|
|
uint32_t EKFGSF_yaw_reset_request_ms; // timestamp of last emergency yaw reset request (uSec)
|
|
uint8_t EKFGSF_yaw_reset_count; // number of emergency yaw resets performed
|
|
bool EKFGSF_run_filterbank; // true when the filter bank is active
|
|
|
|
// logging timestamps
|
|
uint32_t lastTimingLogTime_ms;
|
|
|
|
// logging functions shared by cores:
|
|
void Log_Write_NKF1(uint64_t time_us) const;
|
|
void Log_Write_NKF2(uint64_t time_us) const;
|
|
void Log_Write_NKF3(uint64_t time_us) const;
|
|
void Log_Write_NKF4(uint64_t time_us) const;
|
|
void Log_Write_NKF5(uint64_t time_us) const;
|
|
void Log_Write_Quaternion(uint64_t time_us) const;
|
|
void Log_Write_Beacon(uint64_t time_us);
|
|
void Log_Write_Timing(uint64_t time_us);
|
|
void Log_Write_GSF(uint64_t time_us) const;
|
|
};
|