Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_BMI055.cpp
Andrew Tridgell 4cddf37984 AP_InertialSensor: log unexpected register changes
when the register checking code finds an error we will log what
register changed and to what value
2021-02-24 18:18:37 +11:00

347 lines
9.7 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include "AP_InertialSensor_BMI055.h"
/*
device registers, names follow datasheet conventions, with REGA_
prefix for accel, and REGG_ prefix for gyro
*/
#define REGA_BGW_CHIPID 0x00
#define REGA_ACCD_X_LSB 0x02
#define REGA_ACCD_TEMP 0x08
#define REGA_INT_STATUS_0 0x09
#define REGA_INT_STATUS_1 0x0A
#define REGA_INT_STATUS_2 0x0B
#define REGA_INT_STATUS_3 0x0C
#define REGA_FIFO_STATUS 0x0E
#define REGA_PMU_RANGE 0x0F
#define REGA_PMU_BW 0x10
#define REGA_PMU_LPW 0x11
#define REGA_ACCD_HBW 0x13
#define REGA_BGW_SOFTRESET 0x14
#define REGA_OUT_CTRL 0x20
#define REGA_EST_LATCH 0x21
#define REGA_FIFO_CONFIG_0 0x30
#define REGA_PMU_SELF_TEST 0x32
#define REGA_FIFO_CONFIG_1 0x3E
#define REGA_FIFO_DATA 0x3F
#define REGG_CHIPID 0x00
#define REGA_RATE_X_LSB 0x02
#define REGG_INT_STATUS_0 0x09
#define REGG_INT_STATUS_1 0x0A
#define REGG_INT_STATUS_2 0x0B
#define REGG_INT_STATUS_3 0x0C
#define REGG_FIFO_STATUS 0x0E
#define REGG_RANGE 0x0F
#define REGG_BW 0x10
#define REGG_LPM1 0x11
#define REGG_RATE_HBW 0x13
#define REGG_BGW_SOFTRESET 0x14
#define REGG_FIFO_CONFIG_1 0x3E
#define REGG_FIFO_DATA 0x3F
#define ACCEL_BACKEND_SAMPLE_RATE 2000
#define GYRO_BACKEND_SAMPLE_RATE 2000
extern const AP_HAL::HAL& hal;
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
AP_InertialSensor_BMI055::AP_InertialSensor_BMI055(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_accel,
AP_HAL::OwnPtr<AP_HAL::Device> _dev_gyro,
enum Rotation _rotation)
: AP_InertialSensor_Backend(imu)
, dev_accel(std::move(_dev_accel))
, dev_gyro(std::move(_dev_gyro))
, rotation(_rotation)
{
}
AP_InertialSensor_Backend *
AP_InertialSensor_BMI055::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev_accel,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev_gyro,
enum Rotation rotation)
{
if (!dev_accel || !dev_gyro) {
return nullptr;
}
auto sensor = new AP_InertialSensor_BMI055(imu, std::move(dev_accel), std::move(dev_gyro), rotation);
if (!sensor) {
return nullptr;
}
if (!sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_BMI055::start()
{
accel_instance = _imu.register_accel(ACCEL_BACKEND_SAMPLE_RATE, dev_accel->get_bus_id_devtype(DEVTYPE_INS_BMI055));
gyro_instance = _imu.register_gyro(GYRO_BACKEND_SAMPLE_RATE, dev_gyro->get_bus_id_devtype(DEVTYPE_INS_BMI055));
// setup sensor rotations from probe()
set_gyro_orientation(gyro_instance, rotation);
set_accel_orientation(accel_instance, rotation);
// setup callbacks
dev_accel->register_periodic_callback(1000000UL / ACCEL_BACKEND_SAMPLE_RATE,
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI055::read_fifo_accel, void));
dev_gyro->register_periodic_callback(1000000UL / GYRO_BACKEND_SAMPLE_RATE,
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI055::read_fifo_gyro, void));
}
/*
probe and initialise accelerometer
*/
bool AP_InertialSensor_BMI055::accel_init()
{
dev_accel->get_semaphore()->take_blocking();
uint8_t v;
if (!dev_accel->read_registers(REGA_BGW_CHIPID, &v, 1) || v != 0xFA) {
goto failed;
}
if (!dev_accel->write_register(REGA_BGW_SOFTRESET, 0xB6)) {
goto failed;
}
hal.scheduler->delay(10);
dev_accel->setup_checked_registers(5, 20);
// setup 16g range
if (!dev_accel->write_register(REGA_PMU_RANGE, 0x0C, true)) {
goto failed;
}
// setup filter bandwidth 1kHz
if (!dev_accel->write_register(REGA_PMU_BW, 0x0F, true)) {
goto failed;
}
// disable low-power mode
if (!dev_accel->write_register(REGA_PMU_LPW, 0, true)) {
goto failed;
}
// setup for unfiltered data
if (!dev_accel->write_register(REGA_ACCD_HBW, 0x80, true)) {
goto failed;
}
// setup FIFO for streaming X,Y,Z
if (!dev_accel->write_register(REGA_FIFO_CONFIG_1, 0x80, true)) {
goto failed;
}
hal.console->printf("BMI055: found accel\n");
dev_accel->get_semaphore()->give();
return true;
failed:
dev_accel->get_semaphore()->give();
return false;
}
/*
probe and initialise gyro
*/
bool AP_InertialSensor_BMI055::gyro_init()
{
dev_gyro->get_semaphore()->take_blocking();
uint8_t v;
if (!dev_gyro->read_registers(REGG_CHIPID, &v, 1) || v != 0x0F) {
goto failed;
}
if (!dev_gyro->write_register(REGG_BGW_SOFTRESET, 0xB6)) {
goto failed;
}
hal.scheduler->delay(10);
dev_gyro->setup_checked_registers(5, 20);
// setup 2000dps range
if (!dev_gyro->write_register(REGG_RANGE, 0x00, true)) {
goto failed;
}
// setup filter bandwidth 230Hz, no decimation
if (!dev_gyro->write_register(REGG_BW, 0x81, true)) {
goto failed;
}
// disable low-power mode
if (!dev_gyro->write_register(REGG_LPM1, 0, true)) {
goto failed;
}
// setup for filtered data
if (!dev_gyro->write_register(REGG_RATE_HBW, 0x00, true)) {
goto failed;
}
// setup FIFO for streaming X,Y,Z
if (!dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x80, true)) {
goto failed;
}
hal.console->printf("BMI055: found gyro\n");
dev_gyro->get_semaphore()->give();
return true;
failed:
dev_gyro->get_semaphore()->give();
return false;
}
bool AP_InertialSensor_BMI055::init()
{
dev_accel->set_read_flag(0x80);
dev_gyro->set_read_flag(0x80);
return accel_init() && gyro_init();
}
/*
read accel fifo
*/
void AP_InertialSensor_BMI055::read_fifo_accel(void)
{
uint8_t num_frames;
if (!dev_accel->read_registers(REGA_FIFO_STATUS, &num_frames, 1)) {
_inc_accel_error_count(accel_instance);
return;
}
num_frames &= 0x7F;
// don't read more than 8 frames at a time
if (num_frames > 8) {
num_frames = 8;
}
if (num_frames == 0) {
return;
}
uint8_t data[6*num_frames];
if (!dev_accel->read_registers(REGA_FIFO_DATA, data, num_frames*6)) {
_inc_accel_error_count(accel_instance);
return;
}
// data is 12 bits with 16g range, 7.81mg/LSB
const float scale = 7.81 * 0.001 * GRAVITY_MSS / 16.0f;
for (uint8_t i = 0; i < num_frames; i++) {
const uint8_t *d = &data[i*6];
int16_t xyz[3] {
int16_t(uint16_t((d[0]&0xF0) | (d[1]<<8))),
int16_t(uint16_t((d[2]&0xF0) | (d[3]<<8))),
int16_t(uint16_t((d[4]&0xF0) | (d[5]<<8))) };
Vector3f accel(xyz[0], xyz[1], xyz[2]);
accel *= scale;
_rotate_and_correct_accel(accel_instance, accel);
_notify_new_accel_raw_sample(accel_instance, accel);
}
if (temperature_counter++ == 100) {
temperature_counter = 0;
int8_t t;
if (!dev_accel->read_registers(REGA_ACCD_TEMP, (uint8_t *)&t, 1)) {
_inc_accel_error_count(accel_instance);
} else {
float temp_degc = (0.5f * t) + 23.0f;
_publish_temperature(accel_instance, temp_degc);
}
}
AP_HAL::Device::checkreg reg;
if (!dev_accel->check_next_register(reg)) {
log_register_change(dev_accel->get_bus_id(), reg);
_inc_accel_error_count(accel_instance);
}
}
/*
read gyro fifo
*/
void AP_InertialSensor_BMI055::read_fifo_gyro(void)
{
uint8_t num_frames;
if (!dev_gyro->read_registers(REGG_FIFO_STATUS, &num_frames, 1)) {
_inc_gyro_error_count(gyro_instance);
return;
}
num_frames &= 0x7F;
// don't read more than 8 frames at a time
if (num_frames > 8) {
num_frames = 8;
}
if (num_frames == 0) {
return;
}
uint8_t data[6*num_frames];
if (!dev_gyro->read_registers(REGG_FIFO_DATA, data, num_frames*6)) {
_inc_gyro_error_count(gyro_instance);
return;
}
// data is 16 bits with 2000dps range
const float scale = radians(2000.0f) / 32767.0f;
for (uint8_t i = 0; i < num_frames; i++) {
const uint8_t *d = &data[i*6];
int16_t xyz[3] {
int16_t(uint16_t(d[0] | d[1]<<8)),
int16_t(uint16_t(d[2] | d[3]<<8)),
int16_t(uint16_t(d[4] | d[5]<<8)) };
Vector3f gyro(xyz[0], xyz[1], xyz[2]);
gyro *= scale;
_rotate_and_correct_gyro(gyro_instance, gyro);
_notify_new_gyro_raw_sample(gyro_instance, gyro);
}
AP_HAL::Device::checkreg reg;
if (!dev_gyro->check_next_register(reg)) {
log_register_change(dev_gyro->get_bus_id(), reg);
_inc_gyro_error_count(gyro_instance);
}
}
bool AP_InertialSensor_BMI055::update()
{
update_accel(accel_instance);
update_gyro(gyro_instance);
return true;
}