Ardupilot2/libraries/SITL/SIM_Multicopter.cpp
Andrew Tridgell d820eeaec6 SITL: use AP_Motors conventions for multicopters
this makes it easier to add a simulated vehicle to match a
MotorsMatrix frame type
2016-02-08 10:58:56 +11:00

219 lines
7.8 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
multicopter simulator class
*/
#include "SIM_Multicopter.h"
#include <AP_Motors/AP_Motors.h>
#include <stdio.h>
using namespace SITL;
static const Motor quad_plus_motors[] =
{
Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_3, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_4, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
};
static const Motor quad_x_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_3, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
};
static const Motor hexa_motors[] =
{
Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_3,-120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5),
Motor(AP_MOTORS_MOT_4, 60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_5, -60, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6),
Motor(AP_MOTORS_MOT_6, 120, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3)
};
static const Motor hexax_motors[] =
{
Motor(AP_MOTORS_MOT_1, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_2, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_3, -30, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6),
Motor(AP_MOTORS_MOT_4, 150, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 3),
Motor(AP_MOTORS_MOT_5, 30, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_6,-150, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 4)
};
static const Motor octa_motors[] =
{
Motor(AP_MOTORS_MOT_1, 0, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 1),
Motor(AP_MOTORS_MOT_2, 180, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 5),
Motor(AP_MOTORS_MOT_3, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 2),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8),
Motor(AP_MOTORS_MOT_6, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 6),
Motor(AP_MOTORS_MOT_7, -90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7),
Motor(AP_MOTORS_MOT_8, 90, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3)
};
static const Motor octa_quad_motors[] =
{
Motor(AP_MOTORS_MOT_1, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 1),
Motor(AP_MOTORS_MOT_2, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 7),
Motor(AP_MOTORS_MOT_3, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 5),
Motor(AP_MOTORS_MOT_4, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 3),
Motor(AP_MOTORS_MOT_5, -45, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 8),
Motor(AP_MOTORS_MOT_6, 45, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 2),
Motor(AP_MOTORS_MOT_7, 135, AP_MOTORS_MATRIX_YAW_FACTOR_CCW, 4),
Motor(AP_MOTORS_MOT_8, -135, AP_MOTORS_MATRIX_YAW_FACTOR_CW, 6)
};
/*
table of supported frame types
*/
static Frame supported_frames[] =
{
Frame("+", 4, quad_plus_motors),
Frame("quad", 4, quad_plus_motors),
Frame("copter", 4, quad_plus_motors),
Frame("x", 4, quad_x_motors),
Frame("hexa", 6, hexa_motors),
Frame("hexax", 6, hexax_motors),
Frame("octa", 8, octa_motors),
Frame("octa-quad", 8, octa_quad_motors)
};
void Frame::init(float _mass, float hover_throttle, float _terminal_velocity, float _terminal_rotation_rate)
{
mass = _mass;
/*
scaling from total motor power to Newtons. Allows the copter
to hover against gravity when each motor is at hover_throttle
*/
thrust_scale = (mass * GRAVITY_MSS) / (num_motors * hover_throttle);
terminal_velocity = _terminal_velocity;
terminal_rotation_rate = _terminal_rotation_rate;
}
/*
find a frame by name
*/
Frame *Frame::find_frame(const char *name)
{
for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) {
if (strcasecmp(name, supported_frames[i].name) == 0) {
return &supported_frames[i];
}
}
return NULL;
}
MultiCopter::MultiCopter(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str),
frame(NULL)
{
frame = Frame::find_frame(frame_str);
if (frame == NULL) {
printf("Frame '%s' not found", frame_str);
exit(1);
}
frame->init(1.5, 0.51, 15, 4*radians(360));
frame_height = 0.1;
}
// calculate rotational and linear accelerations
void Frame::calculate_forces(const Aircraft &aircraft,
const Aircraft::sitl_input &input,
Vector3f &rot_accel,
Vector3f &body_accel)
{
// rotational acceleration, in rad/s/s, in body frame
float thrust = 0.0f; // newtons
for (uint8_t i=0; i<num_motors; i++) {
float motor_speed = constrain_float((input.servos[motor_offset+motors[i].servo]-1000)/1000.0, 0, 1);
rot_accel.x += -radians(5000.0) * sinf(radians(motors[i].angle)) * motor_speed;
rot_accel.y += radians(5000.0) * cosf(radians(motors[i].angle)) * motor_speed;
rot_accel.z += motors[i].yaw_factor * motor_speed * radians(400.0);
thrust += motor_speed * thrust_scale; // newtons
}
body_accel = Vector3f(0, 0, -thrust / mass);
if (terminal_rotation_rate > 0) {
// rotational air resistance
const Vector3f &gyro = aircraft.get_gyro();
rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate;
rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate;
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
}
if (terminal_velocity > 0) {
// air resistance
Vector3f air_resistance = -aircraft.get_velocity_ef() * (GRAVITY_MSS/terminal_velocity);
body_accel += aircraft.get_dcm().transposed() * air_resistance;
}
// add some noise
const float gyro_noise = radians(0.1);
const float accel_noise = 0.3;
const float noise_scale = thrust / (thrust_scale * num_motors);
rot_accel += Vector3f(aircraft.rand_normal(0, 1),
aircraft.rand_normal(0, 1),
aircraft.rand_normal(0, 1)) * gyro_noise * noise_scale;
body_accel += Vector3f(aircraft.rand_normal(0, 1),
aircraft.rand_normal(0, 1),
aircraft.rand_normal(0, 1)) * accel_noise * noise_scale;
}
// calculate rotational and linear accelerations
void MultiCopter::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel)
{
frame->calculate_forces(*this, input, rot_accel, body_accel);
}
/*
update the multicopter simulation by one time step
*/
void MultiCopter::update(const struct sitl_input &input)
{
// how much time has passed?
Vector3f rot_accel;
calculate_forces(input, rot_accel, accel_body);
update_dynamics(rot_accel);
if (on_ground(position)) {
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
// update lat/lon/altitude
update_position();
}