Ardupilot2/libraries/AP_Motors/AP_MotorsCoax.cpp
2015-03-03 15:48:44 +09:00

230 lines
8.6 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsSingle.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_MotorsCoax.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsCoax::var_info[] PROGMEM = {
// 0 was used by TB_RATIO
// 1,2,3 were used by throttle curve
// @Param: SPIN_ARMED
// @DisplayName: Motors always spin when armed
// @Description: Controls whether motors always spin when armed (must be below THR_MIN)
// @Values: 0:Do Not Spin,70:VerySlow,100:Slow,130:Medium,150:Fast
// @User: Standard
AP_GROUPINFO("SPIN_ARMED", 5, AP_MotorsCoax, _spin_when_armed, AP_MOTORS_SPIN_WHEN_ARMED),
// @Param: REV_ROLL
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_ROLL", 6, AP_MotorsCoax, _rev_roll, AP_MOTORS_COAX_POSITIVE),
// @Param: REV_PITCH
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_PITCH", 7, AP_MotorsCoax, _rev_pitch, AP_MOTORS_COAX_POSITIVE),
// @Param: REV_ROLL
// @DisplayName: Reverse roll feedback
// @Description: Ensure the feedback is negative
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("REV_YAW", 8, AP_MotorsCoax, _rev_yaw, AP_MOTORS_COAX_POSITIVE),
// @Param: SV_SPEED
// @DisplayName: Servo speed
// @Description: Servo update speed
// @Values: -1:Opposite direction,1:Same direction
AP_GROUPINFO("SV_SPEED", 9, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
AP_GROUPEND
};
// init
void AP_MotorsCoax::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// set update rate for the 2 motors (but not the servo on channel 1&2)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_3] = true;
motor_enabled[AP_MOTORS_MOT_4] = true;
// set ranges for fin servos
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
_servo1.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
_servo2.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
}
// set update rate to motors - a value in hertz
void AP_MotorsCoax::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the two motors
uint32_t mask2 =
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]) ;
hal.rcout->set_freq(mask2, _speed_hz);
// set update rate for the two servos
uint32_t mask =
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) ;
hal.rcout->set_freq(mask, _servo_speed);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsCoax::enable()
{
// enable output channels
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]));
}
// output_min - sends minimum values out to the motor and trim values to the servos
void AP_MotorsCoax::output_min()
{
// send minimum value to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_trim);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _rc_throttle.radio_min);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _rc_throttle.radio_min);
}
// output_armed - sends commands to the motors
void AP_MotorsCoax::output_armed()
{
int16_t out_min = _rc_throttle.radio_min + _min_throttle;
int16_t motor_out[4];
// Throttle is 0 to 1000 only
if (_rc_throttle.servo_out <= 0) {
_rc_throttle.servo_out = 0;
limit.throttle_lower = true;
}
if (_rc_throttle.servo_out >= _max_throttle) {
_rc_throttle.servo_out = _max_throttle;
limit.throttle_upper = true;
}
// capture desired throttle and yaw from receiver
_rc_throttle.calc_pwm();
_rc_yaw.calc_pwm();
// if we are not sending a throttle output, we cut the motors
if(_rc_throttle.servo_out == 0) {
// range check spin_when_armed
if (_spin_when_armed < 0) {
_spin_when_armed = 0;
}
if (_spin_when_armed > _min_throttle) {
_spin_when_armed = _min_throttle;
}
motor_out[AP_MOTORS_MOT_3] = _rc_throttle.radio_min + _spin_when_armed;
motor_out[AP_MOTORS_MOT_4] = _rc_throttle.radio_min + _spin_when_armed;
}else{
// check if throttle is below limit
if (_rc_throttle.servo_out <= _min_throttle) { // perhaps being at min throttle itself is not a problem, only being under is
limit.throttle_lower = true;
}
// motors
motor_out[AP_MOTORS_MOT_3] = _rev_yaw*_rc_yaw.pwm_out + _rc_throttle.radio_out;
motor_out[AP_MOTORS_MOT_4] = -_rev_yaw*_rc_yaw.pwm_out +_rc_throttle.radio_out;
// front
_servo1.servo_out = _rev_roll*_rc_roll.servo_out;
// right
_servo2.servo_out = _rev_pitch*_rc_pitch.servo_out;
_servo1.calc_pwm();
_servo2.calc_pwm();
// adjust for thrust curve and voltage scaling
motor_out[AP_MOTORS_MOT_3] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_3], out_min, _rc_throttle.radio_max);
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, _rc_throttle.radio_max);
// ensure motors don't drop below a minimum value and stop
motor_out[AP_MOTORS_MOT_3] = max(motor_out[AP_MOTORS_MOT_3], out_min);
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min);
}
// send output to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo1.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo2.radio_out);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), motor_out[AP_MOTORS_MOT_3]);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]);
}
// output_disarmed - sends commands to the motors
void AP_MotorsCoax::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!_flags.armed) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// flap servo 1
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
break;
case 2:
// flap servo 2
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
break;
case 3:
// motor 1
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
break;
case 4:
// motor 2
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
break;
default:
// do nothing
break;
}
}