Ardupilot2/libraries/AP_NavEKF/AP_Nav_Common.h
Peter Barker a794688f3b AP_NavEKF3: move definition of MAX_EKF_CORES
if you're not including the AP_NavEKF3 header then you don't get this definition and then you won't be able to compile the DAL.
2024-12-31 10:55:51 +11:00

110 lines
6.1 KiB
C

/*
AP_Nav_Common holds definitions shared by inertial and ekf nav filters
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stdint.h>
#include <AP_Math/AP_Math.h>
#define MAX_EKF_CORES 3 // maximum allowed EKF Cores to be instantiated
// enumeration corresponding to buts within nav_filter_status union.
// Only used for documentation purposes.
enum class NavFilterStatusBit {
ATTITUDE = 1, // attitude estimate valid
HORIZ_VEL = 2, // horizontal velocity estimate valid
VERT_VEL = 4, // vertical velocity estimate valid
HORIZ_POS_REL = 8, // relative horizontal position estimate valid
HORIZ_POS_ABS = 16, // absolute horizontal position estimate valid
VERT_POS = 32, // vertical position estimate valid
TERRAIN_ALT = 64, // terrain height estimate valid
CONST_POS_MODE = 128, // in constant position mode
PRED_HORIZ_POS_REL = 256, // expected good relative horizontal position estimate - used before takeoff
PRED_HORIZ_POS_ABS = 512, // expected good absolute horizontal position estimate - used before takeoff
TAKEOFF_DETECTED = 1024, // optical flow takeoff has been detected
TAKEOFF_EXPECTED = 2048, // compensating for baro errors during takeoff
TOUCHDOWN_EXPECTED = 4096, // compensating for baro errors during touchdown
USING_GPS = 8192, // using GPS position
GPS_GLITCHING = 16384, // GPS glitching is affecting navigation accuracy
GPS_QUALITY_GOOD = 32768, // can use GPS for navigation
INITALIZED = 65536, // has ever been healthy
REJECTING_AIRSPEED = 131072, // rejecting airspeed data
DEAD_RECKONING = 262144, // dead reckoning (e.g. no position or velocity source)
};
union nav_filter_status {
struct {
bool attitude : 1; // 0 - true if attitude estimate is valid
bool horiz_vel : 1; // 1 - true if horizontal velocity estimate is valid
bool vert_vel : 1; // 2 - true if the vertical velocity estimate is valid
bool horiz_pos_rel : 1; // 3 - true if the relative horizontal position estimate is valid
bool horiz_pos_abs : 1; // 4 - true if the absolute horizontal position estimate is valid
bool vert_pos : 1; // 5 - true if the vertical position estimate is valid
bool terrain_alt : 1; // 6 - true if the terrain height estimate is valid
bool const_pos_mode : 1; // 7 - true if we are in const position mode
bool pred_horiz_pos_rel : 1; // 8 - true if filter expects it can produce a good relative horizontal position estimate - used before takeoff
bool pred_horiz_pos_abs : 1; // 9 - true if filter expects it can produce a good absolute horizontal position estimate - used before takeoff
bool takeoff_detected : 1; // 10 - true if optical flow takeoff has been detected
bool takeoff : 1; // 11 - true if filter is compensating for baro errors during takeoff
bool touchdown : 1; // 12 - true if filter is compensating for baro errors during touchdown
bool using_gps : 1; // 13 - true if we are using GPS position
bool gps_glitching : 1; // 14 - true if GPS glitching is affecting navigation accuracy
bool gps_quality_good : 1; // 15 - true if we can use GPS for navigation
bool initalized : 1; // 16 - true if the EKF has ever been healthy
bool rejecting_airspeed : 1; // 17 - true if we are rejecting airspeed data
bool dead_reckoning : 1; // 18 - true if we are dead reckoning (e.g. no position or velocity source)
} flags;
uint32_t value;
};
static_assert(sizeof(uint32_t) == sizeof(nav_filter_status), "nav_filter_status must be uint32_t");
union nav_gps_status {
struct {
bool bad_sAcc : 1; // 0 - true if reported gps speed accuracy is insufficient to start using GPS
bool bad_hAcc : 1; // 1 - true if reported gps horizontal position accuracy is insufficient to start using GPS
bool bad_yaw : 1; // 2 - true if EKF yaw errors are too large to start using GPS
bool bad_sats : 1; // 3 - true if the number of satellites is insufficient to start using GPS
bool bad_VZ : 1; // 4 - true if the vertical velocity is inconsistent with the inertial/baro
bool bad_horiz_drift : 1; // 5 - true if the GPS horizontal position is drifting (this check assumes vehicle is static)
bool bad_hdop : 1; // 6 - true if the reported HDoP is insufficient to start using GPS
bool bad_vert_vel : 1; // 7 - true if the GPS vertical speed is too large to start using GPS (this check assumes vehicle is static)
bool bad_fix : 1; // 8 - true if the GPS is not providing a 3D fix
bool bad_horiz_vel : 1; // 9 - true if the GPS horizontal speed is excessive (this check assumes the vehicle is static)
bool bad_vAcc : 1; // 10 - true if reported gps vertical position accuracy is insufficient to start using GPS
} flags;
uint16_t value;
};
static_assert(sizeof(uint16_t) == sizeof(nav_gps_status), "nav_gps_status must be uint16_t");
/*
structure to hold EKF timing statistics
*/
struct ekf_timing {
uint32_t count;
float dtIMUavg_min;
float dtIMUavg_max;
float dtEKFavg_min;
float dtEKFavg_max;
float delAngDT_max;
float delAngDT_min;
float delVelDT_max;
float delVelDT_min;
};
#define N_MODELS_EKFGSF 5U