785 lines
20 KiB
C++
785 lines
20 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include "Plane.h"
|
|
|
|
/*****************************************************************************
|
|
* The init_ardupilot function processes everything we need for an in - air restart
|
|
* We will determine later if we are actually on the ground and process a
|
|
* ground start in that case.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// This is the help function
|
|
int8_t Plane::main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf("Commands:\n"
|
|
" logs log readback/setup mode\n"
|
|
" setup setup mode\n"
|
|
" test test mode\n"
|
|
" reboot reboot to flight mode\n"
|
|
"\n");
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
static const struct Menu::command main_menu_commands[] = {
|
|
// command function called
|
|
// ======= ===============
|
|
{"logs", MENU_FUNC(process_logs)},
|
|
{"setup", MENU_FUNC(setup_mode)},
|
|
{"test", MENU_FUNC(test_mode)},
|
|
{"reboot", MENU_FUNC(reboot_board)},
|
|
{"help", MENU_FUNC(main_menu_help)},
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
int8_t Plane::reboot_board(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
hal.scheduler->reboot(false);
|
|
return 0;
|
|
}
|
|
|
|
// the user wants the CLI. It never exits
|
|
void Plane::run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
// disable the failsafe code in the CLI
|
|
hal.scheduler->register_timer_failsafe(NULL,1);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
|
|
static void mavlink_delay_cb_static()
|
|
{
|
|
plane.mavlink_delay_cb();
|
|
}
|
|
|
|
static void failsafe_check_static()
|
|
{
|
|
plane.failsafe_check();
|
|
}
|
|
|
|
void Plane::init_ardupilot()
|
|
{
|
|
// initialise serial port
|
|
serial_manager.init_console();
|
|
|
|
cliSerial->printf("\n\nInit " FIRMWARE_STRING
|
|
"\n\nFree RAM: %u\n",
|
|
hal.util->available_memory());
|
|
|
|
|
|
//
|
|
// Check the EEPROM format version before loading any parameters from EEPROM
|
|
//
|
|
load_parameters();
|
|
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
// set sensors to HIL mode
|
|
ins.set_hil_mode();
|
|
compass.set_hil_mode();
|
|
barometer.set_hil_mode();
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
|
// this must be before BoardConfig.init() so if
|
|
// BRD_SAFETYENABLE==0 then we don't have safety off yet
|
|
for (uint8_t tries=0; tries<10; tries++) {
|
|
if (setup_failsafe_mixing()) {
|
|
break;
|
|
}
|
|
hal.scheduler->delay(10);
|
|
}
|
|
#endif
|
|
|
|
BoardConfig.init();
|
|
|
|
// initialise serial ports
|
|
serial_manager.init();
|
|
|
|
// allow servo set on all channels except first 4
|
|
ServoRelayEvents.set_channel_mask(0xFFF0);
|
|
|
|
set_control_channels();
|
|
|
|
// keep a record of how many resets have happened. This can be
|
|
// used to detect in-flight resets
|
|
g.num_resets.set_and_save(g.num_resets+1);
|
|
|
|
// init baro before we start the GCS, so that the CLI baro test works
|
|
barometer.init();
|
|
|
|
// initialise rangefinder
|
|
init_rangefinder();
|
|
|
|
// initialise battery monitoring
|
|
battery.init();
|
|
|
|
rpm_sensor.init();
|
|
|
|
// init the GCS
|
|
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_Console, 0);
|
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
usb_connected = true;
|
|
check_usb_mux();
|
|
|
|
// setup serial port for telem1
|
|
gcs[1].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
|
|
|
|
// setup serial port for telem2
|
|
gcs[2].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 1);
|
|
|
|
// setup serial port for fourth telemetry port (not used by default)
|
|
gcs[3].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 2);
|
|
|
|
// setup frsky
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
frsky_telemetry.init(serial_manager);
|
|
#endif
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
#if LOGGING_ENABLED == ENABLED
|
|
log_init();
|
|
#endif
|
|
|
|
// initialise airspeed sensor
|
|
airspeed.init();
|
|
|
|
if (g.compass_enabled==true) {
|
|
bool compass_ok = compass.init() && compass.read();
|
|
#if HIL_SUPPORT
|
|
compass_ok = true;
|
|
#endif
|
|
if (!compass_ok) {
|
|
cliSerial->println("Compass initialisation failed!");
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
}
|
|
}
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// make optflow available to libraries
|
|
ahrs.set_optflow(&optflow);
|
|
#endif
|
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
|
|
|
|
// give AHRS the airspeed sensor
|
|
ahrs.set_airspeed(&airspeed);
|
|
|
|
// GPS Initialization
|
|
gps.init(&DataFlash, serial_manager);
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
|
|
relay.init();
|
|
|
|
#if MOUNT == ENABLED
|
|
// initialise camera mount
|
|
camera_mount.init(serial_manager);
|
|
#endif
|
|
|
|
#if FENCE_TRIGGERED_PIN > 0
|
|
hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT);
|
|
hal.gpio->write(FENCE_TRIGGERED_PIN, 0);
|
|
#endif
|
|
|
|
/*
|
|
* setup the 'main loop is dead' check. Note that this relies on
|
|
* the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
if (g.cli_enabled == 1) {
|
|
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
|
|
cliSerial->println(msg);
|
|
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
|
|
gcs[1].get_uart()->println(msg);
|
|
}
|
|
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
|
|
gcs[2].get_uart()->println(msg);
|
|
}
|
|
}
|
|
#endif // CLI_ENABLED
|
|
|
|
init_capabilities();
|
|
|
|
startup_ground();
|
|
|
|
// choose the nav controller
|
|
set_nav_controller();
|
|
|
|
set_mode((FlightMode)g.initial_mode.get());
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
|
|
// initialise sensor
|
|
#if OPTFLOW == ENABLED
|
|
optflow.init();
|
|
#endif
|
|
|
|
}
|
|
|
|
//********************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//********************************************************************************
|
|
void Plane::startup_ground(void)
|
|
{
|
|
set_mode(INITIALISING);
|
|
|
|
gcs_send_text(MAV_SEVERITY_WARNING,"<startup_ground> GROUND START");
|
|
|
|
#if (GROUND_START_DELAY > 0)
|
|
gcs_send_text(MAV_SEVERITY_WARNING,"<startup_ground> With Delay");
|
|
delay(GROUND_START_DELAY * 1000);
|
|
#endif
|
|
|
|
// Makes the servos wiggle
|
|
// step 1 = 1 wiggle
|
|
// -----------------------
|
|
if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) {
|
|
demo_servos(1);
|
|
}
|
|
|
|
//INS ground start
|
|
//------------------------
|
|
//
|
|
startup_INS_ground();
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
if (g.trim_rc_at_start != 0) {
|
|
trim_radio();
|
|
}
|
|
|
|
// Save the settings for in-air restart
|
|
// ------------------------------------
|
|
//save_EEPROM_groundstart();
|
|
|
|
// initialise mission library
|
|
mission.init();
|
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly
|
|
// -----------------------
|
|
if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) {
|
|
demo_servos(3);
|
|
}
|
|
|
|
// reset last heartbeat time, so we don't trigger failsafe on slow
|
|
// startup
|
|
failsafe.last_heartbeat_ms = millis();
|
|
|
|
// we don't want writes to the serial port to cause us to pause
|
|
// mid-flight, so set the serial ports non-blocking once we are
|
|
// ready to fly
|
|
serial_manager.set_blocking_writes_all(false);
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
ins.set_dataflash(&DataFlash);
|
|
|
|
gcs_send_text(MAV_SEVERITY_WARNING,"\n\n Ready to FLY.");
|
|
}
|
|
|
|
enum FlightMode Plane::get_previous_mode() {
|
|
return previous_mode;
|
|
}
|
|
|
|
void Plane::set_mode(enum FlightMode mode)
|
|
{
|
|
if(control_mode == mode) {
|
|
// don't switch modes if we are already in the correct mode.
|
|
return;
|
|
}
|
|
if(g.auto_trim > 0 && control_mode == MANUAL)
|
|
trim_control_surfaces();
|
|
|
|
// perform any cleanup required for prev flight mode
|
|
exit_mode(control_mode);
|
|
|
|
// cancel inverted flight
|
|
auto_state.inverted_flight = false;
|
|
|
|
// don't cross-track when starting a mission
|
|
auto_state.next_wp_no_crosstrack = true;
|
|
|
|
// reset landing check
|
|
auto_state.checked_for_autoland = false;
|
|
|
|
// reset go around command
|
|
auto_state.commanded_go_around = false;
|
|
|
|
// zero locked course
|
|
steer_state.locked_course_err = 0;
|
|
|
|
// reset crash detection
|
|
crash_state.is_crashed = false;
|
|
|
|
// set mode
|
|
previous_mode = control_mode;
|
|
control_mode = mode;
|
|
|
|
if (previous_mode == AUTOTUNE && control_mode != AUTOTUNE) {
|
|
// restore last gains
|
|
autotune_restore();
|
|
}
|
|
|
|
// zero initial pitch and highest airspeed on mode change
|
|
auto_state.highest_airspeed = 0;
|
|
auto_state.initial_pitch_cd = ahrs.pitch_sensor;
|
|
|
|
// disable taildrag takeoff on mode change
|
|
auto_state.fbwa_tdrag_takeoff_mode = false;
|
|
|
|
// start with previous WP at current location
|
|
prev_WP_loc = current_loc;
|
|
|
|
switch(control_mode)
|
|
{
|
|
case INITIALISING:
|
|
auto_throttle_mode = true;
|
|
break;
|
|
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case FLY_BY_WIRE_A:
|
|
auto_throttle_mode = false;
|
|
break;
|
|
|
|
case AUTOTUNE:
|
|
auto_throttle_mode = false;
|
|
autotune_start();
|
|
break;
|
|
|
|
case ACRO:
|
|
auto_throttle_mode = false;
|
|
acro_state.locked_roll = false;
|
|
acro_state.locked_pitch = false;
|
|
break;
|
|
|
|
case CRUISE:
|
|
auto_throttle_mode = true;
|
|
cruise_state.locked_heading = false;
|
|
cruise_state.lock_timer_ms = 0;
|
|
set_target_altitude_current();
|
|
break;
|
|
|
|
case FLY_BY_WIRE_B:
|
|
auto_throttle_mode = true;
|
|
set_target_altitude_current();
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// the altitude to circle at is taken from the current altitude
|
|
auto_throttle_mode = true;
|
|
next_WP_loc.alt = current_loc.alt;
|
|
break;
|
|
|
|
case AUTO:
|
|
auto_throttle_mode = true;
|
|
next_WP_loc = prev_WP_loc = current_loc;
|
|
// start or resume the mission, based on MIS_AUTORESET
|
|
mission.start_or_resume();
|
|
break;
|
|
|
|
case RTL:
|
|
auto_throttle_mode = true;
|
|
prev_WP_loc = current_loc;
|
|
do_RTL();
|
|
break;
|
|
|
|
case LOITER:
|
|
auto_throttle_mode = true;
|
|
do_loiter_at_location();
|
|
break;
|
|
|
|
case GUIDED:
|
|
auto_throttle_mode = true;
|
|
guided_throttle_passthru = false;
|
|
/*
|
|
when entering guided mode we set the target as the current
|
|
location. This matches the behaviour of the copter code
|
|
*/
|
|
guided_WP_loc = current_loc;
|
|
set_guided_WP();
|
|
break;
|
|
}
|
|
|
|
// start with throttle suppressed in auto_throttle modes
|
|
throttle_suppressed = auto_throttle_mode;
|
|
|
|
if (should_log(MASK_LOG_MODE))
|
|
DataFlash.Log_Write_Mode(control_mode);
|
|
|
|
// reset attitude integrators on mode change
|
|
rollController.reset_I();
|
|
pitchController.reset_I();
|
|
yawController.reset_I();
|
|
steerController.reset_I();
|
|
}
|
|
|
|
/*
|
|
set_mode() wrapper for MAVLink SET_MODE
|
|
*/
|
|
bool Plane::mavlink_set_mode(uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
case CIRCLE:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case ACRO:
|
|
case FLY_BY_WIRE_A:
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_B:
|
|
case CRUISE:
|
|
case GUIDED:
|
|
case AUTO:
|
|
case RTL:
|
|
case LOITER:
|
|
set_mode((enum FlightMode)mode);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// exit_mode - perform any cleanup required when leaving a flight mode
|
|
void Plane::exit_mode(enum FlightMode mode)
|
|
{
|
|
// stop mission when we leave auto
|
|
if (mode == AUTO) {
|
|
if (mission.state() == AP_Mission::MISSION_RUNNING) {
|
|
mission.stop();
|
|
|
|
if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND)
|
|
{
|
|
restart_landing_sequence();
|
|
}
|
|
}
|
|
auto_state.started_flying_in_auto_ms = 0;
|
|
}
|
|
}
|
|
|
|
void Plane::check_long_failsafe()
|
|
{
|
|
uint32_t tnow = millis();
|
|
// only act on changes
|
|
// -------------------
|
|
if(failsafe.state != FAILSAFE_LONG && failsafe.state != FAILSAFE_GCS && flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
|
|
if (failsafe.state == FAILSAFE_SHORT &&
|
|
(tnow - failsafe.ch3_timer_ms) > g.long_fs_timeout*1000) {
|
|
failsafe_long_on_event(FAILSAFE_LONG);
|
|
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_AUTO && control_mode == AUTO &&
|
|
failsafe.last_heartbeat_ms != 0 &&
|
|
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) {
|
|
failsafe_long_on_event(FAILSAFE_GCS);
|
|
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HEARTBEAT &&
|
|
failsafe.last_heartbeat_ms != 0 &&
|
|
(tnow - failsafe.last_heartbeat_ms) > g.long_fs_timeout*1000) {
|
|
failsafe_long_on_event(FAILSAFE_GCS);
|
|
} else if (g.gcs_heartbeat_fs_enabled == GCS_FAILSAFE_HB_RSSI &&
|
|
gcs[0].last_radio_status_remrssi_ms != 0 &&
|
|
(tnow - gcs[0].last_radio_status_remrssi_ms) > g.long_fs_timeout*1000) {
|
|
failsafe_long_on_event(FAILSAFE_GCS);
|
|
}
|
|
} else {
|
|
// We do not change state but allow for user to change mode
|
|
if (failsafe.state == FAILSAFE_GCS &&
|
|
(tnow - failsafe.last_heartbeat_ms) < g.short_fs_timeout*1000) {
|
|
failsafe.state = FAILSAFE_NONE;
|
|
} else if (failsafe.state == FAILSAFE_LONG &&
|
|
!failsafe.ch3_failsafe) {
|
|
failsafe.state = FAILSAFE_NONE;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Plane::check_short_failsafe()
|
|
{
|
|
// only act on changes
|
|
// -------------------
|
|
if(failsafe.state == FAILSAFE_NONE && (flight_stage != AP_SpdHgtControl::FLIGHT_LAND_FINAL &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH)) {
|
|
if(failsafe.ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde
|
|
failsafe_short_on_event(FAILSAFE_SHORT);
|
|
}
|
|
}
|
|
|
|
if(failsafe.state == FAILSAFE_SHORT) {
|
|
if(!failsafe.ch3_failsafe) {
|
|
failsafe_short_off_event();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Plane::startup_INS_ground(void)
|
|
{
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
while (barometer.get_last_update() == 0) {
|
|
// the barometer begins updating when we get the first
|
|
// HIL_STATE message
|
|
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
|
|
hal.scheduler->delay(1000);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (ins.gyro_calibration_timing() != AP_InertialSensor::GYRO_CAL_NEVER) {
|
|
gcs_send_text(MAV_SEVERITY_ALERT, "Beginning INS calibration; do not move plane");
|
|
hal.scheduler->delay(100);
|
|
}
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
ahrs.set_vehicle_class(AHRS_VEHICLE_FIXED_WING);
|
|
ahrs.set_wind_estimation(true);
|
|
|
|
ins.init(ins_sample_rate);
|
|
ahrs.reset();
|
|
|
|
// read Baro pressure at ground
|
|
//-----------------------------
|
|
init_barometer();
|
|
|
|
if (airspeed.enabled()) {
|
|
// initialize airspeed sensor
|
|
// --------------------------
|
|
zero_airspeed(true);
|
|
} else {
|
|
gcs_send_text(MAV_SEVERITY_WARNING,"NO airspeed");
|
|
}
|
|
}
|
|
|
|
// updates the status of the notify objects
|
|
// should be called at 50hz
|
|
void Plane::update_notify()
|
|
{
|
|
notify.update();
|
|
}
|
|
|
|
void Plane::resetPerfData(void)
|
|
{
|
|
mainLoop_count = 0;
|
|
G_Dt_max = 0;
|
|
G_Dt_min = 0;
|
|
perf_mon_timer = millis();
|
|
}
|
|
|
|
|
|
void Plane::check_usb_mux(void)
|
|
{
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
if (usb_check == usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
usb_connected = usb_check;
|
|
}
|
|
|
|
|
|
void Plane::print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
port->print("Manual");
|
|
break;
|
|
case CIRCLE:
|
|
port->print("Circle");
|
|
break;
|
|
case STABILIZE:
|
|
port->print("Stabilize");
|
|
break;
|
|
case TRAINING:
|
|
port->print("Training");
|
|
break;
|
|
case ACRO:
|
|
port->print("ACRO");
|
|
break;
|
|
case FLY_BY_WIRE_A:
|
|
port->print("FBW_A");
|
|
break;
|
|
case AUTOTUNE:
|
|
port->print("AUTOTUNE");
|
|
break;
|
|
case FLY_BY_WIRE_B:
|
|
port->print("FBW_B");
|
|
break;
|
|
case CRUISE:
|
|
port->print("CRUISE");
|
|
break;
|
|
case AUTO:
|
|
port->print("AUTO");
|
|
break;
|
|
case RTL:
|
|
port->print("RTL");
|
|
break;
|
|
case LOITER:
|
|
port->print("Loiter");
|
|
break;
|
|
case GUIDED:
|
|
port->print("Guided");
|
|
break;
|
|
default:
|
|
port->printf("Mode(%u)", (unsigned)mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
void Plane::print_comma(void)
|
|
{
|
|
cliSerial->print(",");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
write to a servo
|
|
*/
|
|
void Plane::servo_write(uint8_t ch, uint16_t pwm)
|
|
{
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode==1 && !g.hil_servos) {
|
|
if (ch < 8) {
|
|
RC_Channel::rc_channel(ch)->radio_out = pwm;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
hal.rcout->enable_ch(ch);
|
|
hal.rcout->write(ch, pwm);
|
|
}
|
|
|
|
/*
|
|
should we log a message type now?
|
|
*/
|
|
bool Plane::should_log(uint32_t mask)
|
|
{
|
|
#if LOGGING_ENABLED == ENABLED
|
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
|
|
return false;
|
|
}
|
|
bool ret = hal.util->get_soft_armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
|
|
if (ret && !DataFlash.logging_started() && !in_log_download) {
|
|
// we have to set in_mavlink_delay to prevent logging while
|
|
// writing headers
|
|
start_logging();
|
|
}
|
|
return ret;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
send FrSky telemetry. Should be called at 5Hz by scheduler
|
|
*/
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
void Plane::frsky_telemetry_send(void)
|
|
{
|
|
frsky_telemetry.send_frames((uint8_t)control_mode);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
return throttle percentage from 0 to 100
|
|
*/
|
|
uint8_t Plane::throttle_percentage(void)
|
|
{
|
|
// to get the real throttle we need to use norm_output() which
|
|
// returns a number from -1 to 1.
|
|
return constrain_int16(50*(channel_throttle->norm_output()+1), 0, 100);
|
|
}
|
|
|
|
/*
|
|
update AHRS soft arm state and log as needed
|
|
*/
|
|
void Plane::change_arm_state(void)
|
|
{
|
|
Log_Arm_Disarm();
|
|
hal.util->set_soft_armed(arming.is_armed() &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
|
|
}
|
|
|
|
/*
|
|
arm motors
|
|
*/
|
|
bool Plane::arm_motors(AP_Arming::ArmingMethod method)
|
|
{
|
|
if (!arming.arm(method)) {
|
|
return false;
|
|
}
|
|
|
|
// only log if arming was successful
|
|
channel_throttle->enable_out();
|
|
|
|
change_arm_state();
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
disarm motors
|
|
*/
|
|
bool Plane::disarm_motors(void)
|
|
{
|
|
if (!arming.disarm()) {
|
|
return false;
|
|
}
|
|
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) {
|
|
channel_throttle->disable_out();
|
|
}
|
|
if (control_mode != AUTO) {
|
|
// reset the mission on disarm if we are not in auto
|
|
mission.reset();
|
|
}
|
|
|
|
// suppress the throttle in auto-throttle modes
|
|
throttle_suppressed = auto_throttle_mode;
|
|
|
|
//only log if disarming was successful
|
|
change_arm_state();
|
|
|
|
return true;
|
|
}
|
|
|
|
uint32_t Plane::millis(void) const
|
|
{
|
|
return hal.scheduler->millis();
|
|
}
|
|
|
|
uint32_t Plane::micros(void) const
|
|
{
|
|
return hal.scheduler->micros();
|
|
}
|