Ardupilot2/APMrover2/Parameters.cpp
2018-08-12 14:00:48 +09:00

689 lines
30 KiB
C++

#include "Rover.h"
/*
APMRover2 parameter definitions
*/
#define GSCALAR(v, name, def) { rover.g.v.vtype, name, Parameters::k_param_ ## v, &rover.g.v, {def_value:def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &rover.g.v, {group_info:class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &rover.v, {group_info:class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &rover.v, {group_info : class::var_info} }
const AP_Param::Info Rover::var_info[] = {
// @Param: FORMAT_VERSION
// @DisplayName: Eeprom format version number
// @Description: This value is incremented when changes are made to the eeprom format
// @User: Advanced
GSCALAR(format_version, "FORMAT_VERSION", 1),
// @Param: LOG_BITMASK
// @DisplayName: Log bitmask
// @Description: Bitmap of what log types to enable in dataflash. This values is made up of the sum of each of the log types you want to be saved on dataflash. On a PX4 or Pixhawk the large storage size of a microSD card means it is usually best just to enable all log types by setting this to 65535. On APM2 the smaller 4 MByte dataflash means you need to be more selective in your logging or you may run out of log space while flying (in which case it will wrap and overwrite the start of the log). The individual bits are ATTITUDE_FAST=1, ATTITUDE_MEDIUM=2, GPS=4, PerformanceMonitoring=8, ControlTuning=16, NavigationTuning=32, Mode=64, IMU=128, Commands=256, Battery=512, Compass=1024, TECS=2048, Camera=4096, RCandServo=8192, Rangefinder=16384, Arming=32768, FullLogs=65535
// @Values: 0:Disabled,5190:APM2-Default,65535:PX4/Pixhawk-Default
// @Bitmask: 0:ATTITUDE_FAST,1:ATTITUDE_MED,2:GPS,3:PM,4:THR,5:NTUN,7:IMU,8:CMD,9:CURRENT,10:RANGEFINDER,11:COMPASS,12:CAMERA,13:STEERING,14:RC,15:ARM/DISARM,19:IMU_RAW
// @User: Advanced
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
// @Param: RST_SWITCH_CH
// @DisplayName: Reset Switch Channel
// @Description: RC channel to use to reset to last flight mode after geofence takeover.
// @User: Advanced
GSCALAR(reset_switch_chan, "RST_SWITCH_CH", 0),
// @Param: INITIAL_MODE
// @DisplayName: Initial driving mode
// @Description: This selects the mode to start in on boot. This is useful for when you want to start in AUTO mode on boot without a receiver. Usually used in combination with when AUTO_TRIGGER_PIN or AUTO_KICKSTART.
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Advanced
GSCALAR(initial_mode, "INITIAL_MODE", Mode::Number::MANUAL),
// @Param: SYSID_THIS_MAV
// @DisplayName: MAVLink system ID of this vehicle
// @Description: Allows setting an individual MAVLink system id for this vehicle to distinguish it from others on the same network
// @Range: 1 255
// @User: Advanced
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
// @Param: SYSID_MYGCS
// @DisplayName: MAVLink ground station ID
// @Description: The identifier of the ground station in the MAVLink protocol. Don't change this unless you also modify the ground station to match.
// @Range: 1 255
// @User: Advanced
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
// @Param: TELEM_DELAY
// @DisplayName: Telemetry startup delay
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: s
// @Range: 0 30
// @Increment: 1
GSCALAR(telem_delay, "TELEM_DELAY", 0),
// @Param: GCS_PID_MASK
// @DisplayName: GCS PID tuning mask
// @Description: bitmask of PIDs to send MAVLink PID_TUNING messages for
// @User: Advanced
// @Values: 0:None,1:Steering,2:Throttle,4:Pitch
// @Bitmask: 0:Steering,1:Throttle,2:Pitch
GSCALAR(gcs_pid_mask, "GCS_PID_MASK", 0),
// @Param: MAG_ENABLE
// @DisplayName: Enable Compass
// @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass. Note that this is separate from COMPASS_USE. This will enable the low level senor, and will enable logging of magnetometer data. To use the compass for navigation you must also set COMPASS_USE to 1.
// @User: Standard
// @Values: 0:Disabled,1:Enabled
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
// @Param: AUTO_TRIGGER_PIN
// @DisplayName: Auto mode trigger pin
// @Description: pin number to use to enable the throttle in auto mode. If set to -1 then don't use a trigger, otherwise this is a pin number which if held low in auto mode will enable the motor to run. If the switch is released while in AUTO then the motor will stop again. This can be used in combination with INITIAL_MODE to give a 'press button to start' rover with no receiver.
// @Values: -1:Disabled,0:APM TriggerPin0,1:APM TriggerPin1,2:APM TriggerPin2,3:APM TriggerPin3,4:APM TriggerPin4,5:APM TriggerPin5,6:APM TriggerPin6,7:APM TriggerPin7,8:APM TriggerPin8,50:Pixhawk TriggerPin50,51:Pixhawk TriggerPin51,52:Pixhawk TriggerPin52,53:Pixhawk TriggerPin53,54:Pixhawk TriggerPin54,55:Pixhawk TriggerPin55
// @User: standard
GSCALAR(auto_trigger_pin, "AUTO_TRIGGER_PIN", -1),
// @Param: AUTO_KICKSTART
// @DisplayName: Auto mode trigger kickstart acceleration
// @Description: X acceleration in meters/second/second to use to trigger the motor start in auto mode. If set to zero then auto throttle starts immediately when the mode switch happens, otherwise the rover waits for the X acceleration to go above this value before it will start the motor
// @Units: m/s/s
// @Range: 0 20
// @Increment: 0.1
// @User: standard
GSCALAR(auto_kickstart, "AUTO_KICKSTART", 0.0f),
// @Param: CRUISE_SPEED
// @DisplayName: Target cruise speed in auto modes
// @Description: The target speed in auto missions.
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
GSCALAR(speed_cruise, "CRUISE_SPEED", CRUISE_SPEED),
// @Param: PIVOT_TURN_ANGLE
// @DisplayName: Pivot turn angle
// @Description: Navigation angle threshold in degrees to switch to pivot steering when SKID_STEER_OUT is 1. This allows you to setup a skid steering rover to turn on the spot in auto mode when the angle it needs to turn it greater than this angle. An angle of zero means to disable pivot turning. Note that you will probably also want to set a low value for WP_RADIUS to get neat turns.
// @Units: deg
// @Range: 0 360
// @Increment: 1
// @User: Standard
GSCALAR(pivot_turn_angle, "PIVOT_TURN_ANGLE", 60),
// @Param: CRUISE_THROTTLE
// @DisplayName: Base throttle percentage in auto
// @Description: The base throttle percentage to use in auto mode. The CRUISE_SPEED parameter controls the target speed, but the rover starts with the CRUISE_THROTTLE setting as the initial estimate for how much throttle is needed to achieve that speed. It then adjusts the throttle based on how fast the rover is actually going.
// @Units: %
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_cruise, "CRUISE_THROTTLE", 50),
// @Param: PILOT_STEER_TYPE
// @DisplayName: Pilot input steering type
// @Description: Set this to 1 for skid steering input rovers (tank track style in RC controller). When enabled, servo1 is used for the left track control, servo3 is used for right track control
// @Values: 0:Default,1:Two Paddles Input,2:Direction reversed when backing up,3:Direction unchanged when backing up
// @User: Standard
GSCALAR(pilot_steer_type, "PILOT_STEER_TYPE", 0),
// @Param: FS_ACTION
// @DisplayName: Failsafe Action
// @Description: What to do on a failsafe event
// @Values: 0:Nothing,1:RTL,2:Hold,3:SmartRTL or RTL,4:SmartRTL or Hold
// @User: Standard
GSCALAR(fs_action, "FS_ACTION", 2),
// @Param: FS_TIMEOUT
// @DisplayName: Failsafe timeout
// @Description: How long a failsafe event need to happen for before we trigger the failsafe action
// @Units: s
// @User: Standard
GSCALAR(fs_timeout, "FS_TIMEOUT", 5),
// @Param: FS_THR_ENABLE
// @DisplayName: Throttle Failsafe Enable
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel to a low value. This can be used to detect the RC transmitter going out of range. Failsafe will be triggered when the throttle channel goes below the FS_THR_VALUE for FS_TIMEOUT seconds.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(fs_throttle_enabled, "FS_THR_ENABLE", 1),
// @Param: FS_THR_VALUE
// @DisplayName: Throttle Failsafe Value
// @Description: The PWM level on the throttle channel below which throttle failsafe triggers.
// @Range: 910 1100
// @Increment: 1
// @User: Standard
GSCALAR(fs_throttle_value, "FS_THR_VALUE", 910),
// @Param: FS_GCS_ENABLE
// @DisplayName: GCS failsafe enable
// @Description: Enable ground control station telemetry failsafe. When enabled the Rover will execute the FS_ACTION when it fails to receive MAVLink heartbeat packets for FS_TIMEOUT seconds.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(fs_gcs_enabled, "FS_GCS_ENABLE", 0),
// @Param: FS_CRASH_CHECK
// @DisplayName: Crash check action
// @Description: What to do on a crash event. When enabled the rover will go to hold if a crash is detected.
// @Values: 0:Disabled,1:Hold,2:HoldAndDisarm
// @User: Standard
GSCALAR(fs_crash_check, "FS_CRASH_CHECK", FS_CRASH_DISABLE),
// @Param: RNGFND_TRIGGR_CM
// @DisplayName: Object avoidance trigger distance
// @Description: The distance from an obstacle in centimeters at which the rangefinder triggers a turn to avoid the obstacle
// @Units: cm
// @Range: 0 1000
// @Increment: 1
// @User: Standard
GSCALAR(rangefinder_trigger_cm, "RNGFND_TRIGGR_CM", 100),
// @Param: RNGFND_TURN_ANGL
// @DisplayName: Object avoidance turn aggressiveness and direction
// @Description: The aggressiveness and direction of turn to avoid an obstacle. Large positive or negative values (i.e. -450 or 450) cause turns up to the vehicle's maximum lateral acceleration (TURN_MAX_G) while values near zero cause gentle turns. Positive means to turn right, negative means turn left.
// @Units: deg
// @Range: -450 450
// @Increment: 1
// @User: Standard
GSCALAR(rangefinder_turn_angle, "RNGFND_TURN_ANGL", 45),
// @Param: RNGFND_TURN_TIME
// @DisplayName: Object avoidance turn time
// @Description: The amount of time in seconds to apply the RNGFND_TURN_ANGL after detecting an obstacle.
// @Units: s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
GSCALAR(rangefinder_turn_time, "RNGFND_TURN_TIME", 1.0f),
// @Param: RNGFND_DEBOUNCE
// @DisplayName: Object avoidance rangefinder debounce count
// @Description: The number of 50Hz rangefinder hits needed to trigger an obstacle avoidance event. If you get a lot of false rangefinder events then raise this number, but if you make it too large then it will cause lag in detecting obstacles, which could cause you go hit the obstacle.
// @Range: 1 100
// @Increment: 1
// @User: Standard
GSCALAR(rangefinder_debounce, "RNGFND_DEBOUNCE", 2),
// @Param: MODE_CH
// @DisplayName: Mode channel
// @Description: RC Channel to use for driving mode control
// @User: Advanced
GSCALAR(mode_channel, "MODE_CH", MODE_CHANNEL),
// @Param: MODE1
// @DisplayName: Mode1
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
// @Description: Driving mode for switch position 1 (910 to 1230 and above 2049)
GSCALAR(mode1, "MODE1", Mode::Number::MANUAL),
// @Param: MODE2
// @DisplayName: Mode2
// @Description: Driving mode for switch position 2 (1231 to 1360)
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
GSCALAR(mode2, "MODE2", Mode::Number::MANUAL),
// @Param: MODE3
// @DisplayName: Mode3
// @Description: Driving mode for switch position 3 (1361 to 1490)
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
GSCALAR(mode3, "MODE3", Mode::Number::MANUAL),
// @Param: MODE4
// @DisplayName: Mode4
// @Description: Driving mode for switch position 4 (1491 to 1620)
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
GSCALAR(mode4, "MODE4", Mode::Number::MANUAL),
// @Param: MODE5
// @DisplayName: Mode5
// @Description: Driving mode for switch position 5 (1621 to 1749)
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
GSCALAR(mode5, "MODE5", Mode::Number::MANUAL),
// @Param: MODE6
// @DisplayName: Mode6
// @Description: Driving mode for switch position 6 (1750 to 2049)
// @Values: 0:Manual,1:Acro,3:Steering,4:Hold,5:Loiter,6:Follow,10:Auto,11:RTL,12:SmartRTL,15:Guided
// @User: Standard
GSCALAR(mode6, "MODE6", Mode::Number::MANUAL),
// @Param: WP_RADIUS
// @DisplayName: Waypoint radius
// @Description: The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the rover will turn along the next waypoint path.
// @Units: m
// @Range: 0 1000
// @Increment: 0.1
// @User: Standard
GSCALAR(waypoint_radius, "WP_RADIUS", 2.0f),
// @Param: WP_OVERSHOOT
// @DisplayName: Waypoint overshoot maximum
// @Description: Waypoint overshoot maximum in meters. The vehicle will attempt to stay within this many meters of the track as it completes one waypoint and moves to the next.
// @Units: m
// @Range: 0 10
// @Increment: 0.1
// @User: Standard
GSCALAR(waypoint_overshoot, "WP_OVERSHOOT", 2.0f),
// @Param: TURN_MAX_G
// @DisplayName: Turning maximum G force
// @Description: The maximum turning acceleration (in units of gravities) that the rover can handle while remaining stable. The navigation code will keep the lateral acceleration below this level to avoid rolling over or slipping the wheels in turns
// @Units: gravities
// @Range: 0.1 10
// @Increment: 0.01
// @User: Standard
GSCALAR(turn_max_g, "TURN_MAX_G", 0.6f),
// variables not in the g class which contain EEPROM saved variables
// @Group: COMPASS_
// @Path: ../libraries/AP_Compass/AP_Compass.cpp
GOBJECT(compass, "COMPASS_", Compass),
// @Group: SCHED_
// @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp
GOBJECT(scheduler, "SCHED_", AP_Scheduler),
// barometer ground calibration. The GND_ prefix is chosen for
// compatibility with previous releases of ArduPlane
// @Group: GND_
// @Path: ../libraries/AP_Baro/AP_Baro.cpp
GOBJECT(barometer, "GND_", AP_Baro),
// @Group: RELAY_
// @Path: ../libraries/AP_Relay/AP_Relay.cpp
GOBJECT(relay, "RELAY_", AP_Relay),
// @Group: RCMAP_
// @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp
GOBJECT(rcmap, "RCMAP_", RCMapper),
// @Group: SR0_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[0], gcs0, "SR0_", GCS_MAVLINK),
// @Group: SR1_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[1], gcs1, "SR1_", GCS_MAVLINK),
// @Group: SR2_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[2], gcs2, "SR2_", GCS_MAVLINK),
// @Group: SR3_
// @Path: GCS_Mavlink.cpp
GOBJECTN(_gcs._chan[3], gcs3, "SR3_", GCS_MAVLINK),
// @Group: SERIAL
// @Path: ../libraries/AP_SerialManager/AP_SerialManager.cpp
GOBJECT(serial_manager, "SERIAL", AP_SerialManager),
// @Group: NAVL1_
// @Path: ../libraries/AP_L1_Control/AP_L1_Control.cpp
GOBJECT(L1_controller, "NAVL1_", AP_L1_Control),
// @Group: RNGFND
// @Path: ../libraries/AP_RangeFinder/RangeFinder.cpp
GOBJECT(rangefinder, "RNGFND", RangeFinder),
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
// @Group: SIM_
// @Path: ../libraries/SITL/SITL.cpp
GOBJECT(sitl, "SIM_", SITL::SITL),
#endif
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
#if CAMERA == ENABLED
// @Group: CAM_
// @Path: ../libraries/AP_Camera/AP_Camera.cpp
GOBJECT(camera, "CAM_", AP_Camera),
#endif
#if MOUNT == ENABLED
// @Group: MNT
// @Path: ../libraries/AP_Mount/AP_Mount.cpp
GOBJECT(camera_mount, "MNT", AP_Mount),
#endif
// @Group: ARMING_
// @Path: ../libraries/AP_Arming/AP_Arming.cpp
GOBJECT(arming, "ARMING_", AP_Arming),
// @Group: LOG
// @Path: ../libraries/DataFlash/DataFlash.cpp
GOBJECT(DataFlash, "LOG", DataFlash_Class),
// @Group: BATT
// @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp
GOBJECT(battery, "BATT", AP_BattMonitor),
// @Group: BRD_
// @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp
GOBJECT(BoardConfig, "BRD_", AP_BoardConfig),
#if HAL_WITH_UAVCAN
// @Group: CAN_
// @Path: ../libraries/AP_BoardConfig/AP_BoardConfig_CAN.cpp
GOBJECT(BoardConfig_CAN, "CAN_", AP_BoardConfig_CAN),
#endif
// GPS driver
// @Group: GPS_
// @Path: ../libraries/AP_GPS/AP_GPS.cpp
GOBJECT(gps, "GPS_", AP_GPS),
#if AP_AHRS_NAVEKF_AVAILABLE
// @Group: EK2_
// @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp
GOBJECTN(EKF2, NavEKF2, "EK2_", NavEKF2),
// @Group: EK3_
// @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp
GOBJECTN(EKF3, NavEKF3, "EK3_", NavEKF3),
#endif
// @Group: MIS_
// @Path: ../libraries/AP_Mission/AP_Mission.cpp
GOBJECT(mission, "MIS_", AP_Mission),
// @Group: RSSI_
// @Path: ../libraries/AP_RSSI/AP_RSSI.cpp
GOBJECT(rssi, "RSSI_", AP_RSSI),
// @Group: NTF_
// @Path: ../libraries/AP_Notify/AP_Notify.cpp
GOBJECT(notify, "NTF_", AP_Notify),
// @Group: BTN_
// @Path: ../libraries/AP_Button/AP_Button.cpp
GOBJECT(button, "BTN_", AP_Button),
// @Group:
// @Path: Parameters.cpp
GOBJECT(g2, "", ParametersG2),
AP_VAREND
};
/*
2nd group of parameters
*/
const AP_Param::GroupInfo ParametersG2::var_info[] = {
#if STATS_ENABLED == ENABLED
// @Group: STAT
// @Path: ../libraries/AP_Stats/AP_Stats.cpp
AP_SUBGROUPINFO(stats, "STAT", 1, ParametersG2, AP_Stats),
#endif
// @Param: SYSID_ENFORCE
// @DisplayName: GCS sysid enforcement
// @Description: This controls whether packets from other than the expected GCS system ID will be accepted
// @Values: 0:NotEnforced,1:Enforced
// @User: Advanced
AP_GROUPINFO("SYSID_ENFORCE", 2, ParametersG2, sysid_enforce, 0),
// @Group: SERVO
// @Path: ../libraries/SRV_Channel/SRV_Channels.cpp
AP_SUBGROUPINFO(servo_channels, "SERVO", 3, ParametersG2, SRV_Channels),
// @Group: RC
// @Path: ../libraries/RC_Channel/RC_Channels_VarInfo.h
AP_SUBGROUPINFO(rc_channels, "RC", 4, ParametersG2, RC_Channels_Rover),
#if ADVANCED_FAILSAFE == ENABLED
// @Group: AFS_
// @Path: ../libraries/AP_AdvancedFailsafe/AP_AdvancedFailsafe.cpp
AP_SUBGROUPINFO(afs, "AFS_", 5, ParametersG2, AP_AdvancedFailsafe),
#endif
// @Group: BCN
// @Path: ../libraries/AP_Beacon/AP_Beacon.cpp
AP_SUBGROUPINFO(beacon, "BCN", 6, ParametersG2, AP_Beacon),
// @Group: VISO
// @Path: ../libraries/AP_VisualOdom/AP_VisualOdom.cpp
AP_SUBGROUPINFO(visual_odom, "VISO", 7, ParametersG2, AP_VisualOdom),
// @Group: MOT_
// @Path: AP_MotorsUGV.cpp
AP_SUBGROUPINFO(motors, "MOT_", 8, ParametersG2, AP_MotorsUGV),
// @Group: WENC
// @Path: ../libraries/AP_WheelEncoder/AP_WheelEncoder.cpp
AP_SUBGROUPINFO(wheel_encoder, "WENC", 9, ParametersG2, AP_WheelEncoder),
// @Group: ATC
// @Path: ../libraries/APM_Control/AR_AttitudeControl.cpp
AP_SUBGROUPINFO(attitude_control, "ATC", 10, ParametersG2, AR_AttitudeControl),
// @Param: TURN_RADIUS
// @DisplayName: Turn radius of vehicle
// @Description: Turn radius of vehicle in meters while at low speeds. Lower values produce tighter turns in steering mode
// @Units: m
// @Range: 0 10
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("TURN_RADIUS", 11, ParametersG2, turn_radius, 0.9),
// @Param: ACRO_TURN_RATE
// @DisplayName: Acro mode turn rate maximum
// @Description: Acro mode turn rate maximum
// @Units: deg/s
// @Range: 0 360
// @Increment: 1
// @User: Standard
AP_GROUPINFO("ACRO_TURN_RATE", 12, ParametersG2, acro_turn_rate, 180.0f),
// @Group: SRTL_
// @Path: ../libraries/AP_SmartRTL/AP_SmartRTL.cpp
AP_SUBGROUPINFO(smart_rtl, "SRTL_", 13, ParametersG2, AP_SmartRTL),
// @Param: WP_SPEED
// @DisplayName: Waypoint speed default
// @Description: Waypoint speed default. If zero use CRUISE_SPEED.
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("WP_SPEED", 14, ParametersG2, wp_speed, 0.0f),
// @Param: RTL_SPEED
// @DisplayName: Return-to-Launch speed default
// @Description: Return-to-Launch speed default. If zero use WP_SPEED or CRUISE_SPEED.
// @Units: m/s
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("RTL_SPEED", 15, ParametersG2, rtl_speed, 0.0f),
// @Param: FRAME_CLASS
// @DisplayName: Frame Class
// @Description: Frame Class
// @Values: 0:Undefined,1:Rover,2:Boat,3:BalanceBot
// @User: Standard
AP_GROUPINFO("FRAME_CLASS", 16, ParametersG2, frame_class, 1),
// @Group: FENCE_
// @Path: ../libraries/AC_Fence/AC_Fence.cpp
AP_SUBGROUPINFO(fence, "FENCE_", 17, ParametersG2, AC_Fence),
// @Group: PRX
// @Path: ../libraries/AP_Proximity/AP_Proximity.cpp
AP_SUBGROUPINFO(proximity, "PRX", 18, ParametersG2, AP_Proximity),
// @Group: AVOID_
// @Path: ../libraries/AC_Avoidance/AC_Avoid.cpp
AP_SUBGROUPINFO(avoid, "AVOID_", 19, ParametersG2, AC_Avoid),
// @Param: PIVOT_TURN_RATE
// @DisplayName: Pivot turn rate
// @Description: Desired pivot turn rate in deg/s.
// @Units: deg/s
// @Range: 0 360
// @Increment: 1
// @User: Standard
AP_GROUPINFO("PIVOT_TURN_RATE", 20, ParametersG2, pivot_turn_rate, 90),
// @Param: BAL_PITCH_MAX
// @DisplayName: BalanceBot Maximum Pitch
// @Description: Pitch angle in degrees at 100% throttle
// @Units: deg
// @Range: 0 5
// @Increment: 0.1
// @User: Standard
AP_GROUPINFO("BAL_PITCH_MAX", 21, ParametersG2, bal_pitch_max, 2),
// @Param: CRASH_ANGLE
// @DisplayName: Crash Angle
// @Description: Pitch/Roll angle limit in degrees for crash check. Zero disables check
// @Units: deg
// @Range: 0 60
// @Increment: 1
// @User: Standard
AP_GROUPINFO("CRASH_ANGLE", 22, ParametersG2, crash_angle, 0),
// @Group: FOLL
// @Path: ../libraries/AP_Follow/AP_Follow.cpp
AP_SUBGROUPINFO(follow, "FOLL", 23, ParametersG2, AP_Follow),
// @Param: FRAME_TYPE
// @DisplayName: Frame Type
// @Description: Frame Type
// @Values: 0:Undefined,1:Omni3,2:OmniX,3:OmniPlus
// @User: Standard
// @RebootRequired: True
AP_GROUPINFO("FRAME_TYPE", 24, ParametersG2, frame_type, 0),
// @Param: LOIT_TYPE
// @DisplayName: Loiter type
// @Description: Loiter behaviour when around next to a taget point
// @Values: 0:Reverse to target point,1:Always face bow to target point
// @User: Standard
AP_GROUPINFO("LOIT_TYPE", 25, ParametersG2, loit_type, 0),
AP_GROUPEND
};
// These auxiliary channel param descriptions are here so that users of beta Mission Planner (which uses the master branch as its source of descriptions)
// can get them. These lines can be removed once Rover-3.6-beta testing begins or we improve the source of descriptions for GCSs.
//
// @Param: CH7_OPTION
// @DisplayName: Channel 7 option
// @Description: What to do use channel 7 for
// @Values: 0:Nothing,1:SaveWaypoint,2:LearnCruiseSpeed,3:ArmDisarm,4:Manual,5:Acro,6:Steering,7:Hold,8:Auto,9:RTL,10:SmartRTL,11:Guided,12:Loiter
// @User: Standard
// @Param: AUX_CH
// @DisplayName: Auxiliary switch channel
// @Description: RC Channel to use for auxiliary functions including saving waypoints
// @User: Advanced
ParametersG2::ParametersG2(void)
:
#if ADVANCED_FAILSAFE == ENABLED
afs(rover.mission, rover.gps),
#endif
beacon(rover.serial_manager),
motors(rover.ServoRelayEvents),
attitude_control(rover.ahrs),
smart_rtl(),
fence(rover.ahrs),
proximity(rover.serial_manager),
avoid(rover.ahrs, fence, rover.g2.proximity, &rover.g2.beacon),
follow()
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
This is a conversion table from old parameter values to new
parameter names. The startup code looks for saved values of the old
parameters and will copy them across to the new parameters if the
new parameter does not yet have a saved value. It then saves the new
value.
Note that this works even if the old parameter has been removed. It
relies on the old k_param index not being removed
The second column below is the index in the var_info[] table for the
old object. This should be zero for top level parameters.
*/
const AP_Param::ConversionInfo conversion_table[] = {
{ Parameters::k_param_battery_monitoring, 0, AP_PARAM_INT8, "BATT_MONITOR" },
{ Parameters::k_param_battery_volt_pin, 0, AP_PARAM_INT8, "BATT_VOLT_PIN" },
{ Parameters::k_param_battery_curr_pin, 0, AP_PARAM_INT8, "BATT_CURR_PIN" },
{ Parameters::k_param_volt_div_ratio, 0, AP_PARAM_FLOAT, "BATT_VOLT_MULT" },
{ Parameters::k_param_curr_amp_per_volt, 0, AP_PARAM_FLOAT, "BATT_AMP_PERVOLT" },
{ Parameters::k_param_pack_capacity, 0, AP_PARAM_INT32, "BATT_CAPACITY" },
{ Parameters::k_param_serial0_baud, 0, AP_PARAM_INT16, "SERIAL0_BAUD" },
{ Parameters::k_param_serial1_baud, 0, AP_PARAM_INT16, "SERIAL1_BAUD" },
{ Parameters::k_param_serial2_baud, 0, AP_PARAM_INT16, "SERIAL2_BAUD" },
{ Parameters::k_param_throttle_min_old, 0, AP_PARAM_INT8, "MOT_THR_MIN" },
{ Parameters::k_param_throttle_max_old, 0, AP_PARAM_INT8, "MOT_THR_MAX" },
};
void Rover::load_parameters(void)
{
if (!AP_Param::check_var_info()) {
hal.console->printf("Bad var table\n");
AP_HAL::panic("Bad var table");
}
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
hal.console->printf("Firmware change: erasing EEPROM...\n");
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
hal.console->printf("done.\n");
}
const uint32_t before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
AP_Param::convert_old_parameters(&conversion_table[0], ARRAY_SIZE(conversion_table));
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_ROVER);
SRV_Channels::set_default_function(CH_1, SRV_Channel::k_steering);
SRV_Channels::set_default_function(CH_3, SRV_Channel::k_throttle);
if (is_balancebot()) {
g2.crash_angle.set_default(30);
}
const uint8_t old_rc_keys[14] = { Parameters::k_param_rc_1_old, Parameters::k_param_rc_2_old,
Parameters::k_param_rc_3_old, Parameters::k_param_rc_4_old,
Parameters::k_param_rc_5_old, Parameters::k_param_rc_6_old,
Parameters::k_param_rc_7_old, Parameters::k_param_rc_8_old,
Parameters::k_param_rc_9_old, Parameters::k_param_rc_10_old,
Parameters::k_param_rc_11_old, Parameters::k_param_rc_12_old,
Parameters::k_param_rc_13_old, Parameters::k_param_rc_14_old };
const uint16_t old_aux_chan_mask = 0x3FFA;
SRV_Channels::upgrade_parameters(old_rc_keys, old_aux_chan_mask, &rcmap);
hal.console->printf("load_all took %uus\n", unsigned(micros() - before));
// set a more reasonable default NAVL1_PERIOD for rovers
L1_controller.set_default_period(NAVL1_PERIOD);
// configure safety switch to allow stopping the motors while armed
#if HAL_HAVE_SAFETY_SWITCH
AP_Param::set_default_by_name("BRD_SAFETYOPTION", AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF|
AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON|
AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED);
#endif
}