Ardupilot2/libraries/GCS_MAVLink/GCS.h
2014-07-24 21:45:46 +10:00

339 lines
12 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file GCS.h
/// @brief Interface definition for the various Ground Control System
// protocols.
#ifndef __GCS_H
#define __GCS_H
#include <AP_HAL.h>
#include <AP_Common.h>
#include <GCS_MAVLink.h>
#include <DataFlash.h>
#include <AP_Mission.h>
#include <stdint.h>
// GCS Message ID's
/// NOTE: to ensure we never block on sending MAVLink messages
/// please keep each MSG_ to a single MAVLink message. If need be
/// create new MSG_ IDs for additional messages on the same
/// stream
enum ap_message {
MSG_HEARTBEAT,
MSG_ATTITUDE,
MSG_LOCATION,
MSG_EXTENDED_STATUS1,
MSG_EXTENDED_STATUS2,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_CURRENT_WAYPOINT,
MSG_VFR_HUD,
MSG_RADIO_OUT,
MSG_RADIO_IN,
MSG_RAW_IMU1,
MSG_RAW_IMU2,
MSG_RAW_IMU3,
MSG_GPS_RAW,
MSG_SYSTEM_TIME,
MSG_SERVO_OUT,
MSG_NEXT_WAYPOINT,
MSG_NEXT_PARAM,
MSG_STATUSTEXT,
MSG_LIMITS_STATUS,
MSG_FENCE_STATUS,
MSG_AHRS,
MSG_SIMSTATE,
MSG_HWSTATUS,
MSG_WIND,
MSG_RANGEFINDER,
MSG_TERRAIN,
MSG_RETRY_DEFERRED // this must be last
};
///
/// @class GCS
/// @brief Class describing the interface between the APM code
/// proper and the GCS implementation.
///
/// GCS' are currently implemented inside the sketch and as such have
/// access to all global state. The sketch should not, however, call GCS
/// internal functions - all calls to the GCS should be routed through
/// this interface (or functions explicitly exposed by a subclass).
///
class GCS_Class
{
public:
/// Startup initialisation.
///
/// This routine performs any one-off initialisation required before
/// GCS messages are exchanged.
///
/// @note The stream is expected to be set up and configured for the
/// correct bitrate before ::init is called.
///
/// @note The stream is currently BetterStream so that we can use the _P
/// methods; this may change if Arduino adds them to Print.
///
/// @param port The stream over which messages are exchanged.
///
void init(AP_HAL::UARTDriver *port) {
_port = port;
}
/// Update GCS state.
///
/// This may involve checking for received bytes on the stream,
/// or sending additional periodic messages.
void update(void) {
}
/// Send a message with a single numeric parameter.
///
/// This may be a standalone message, or the GCS driver may
/// have its own way of locating additional parameters to send.
///
/// @param id ID of the message to send.
/// @param param Explicit message parameter.
///
void send_message(enum ap_message id) {
}
/// Send a text message.
///
/// @param severity A value describing the importance of the message.
/// @param str The text to be sent.
///
void send_text(gcs_severity severity, const char *str) {
}
/// Send a text message with a PSTR()
///
/// @param severity A value describing the importance of the message.
/// @param str The text to be sent.
///
void send_text_P(gcs_severity severity, const prog_char_t *str) {
}
// send streams which match frequency range
void data_stream_send(void);
// set to true if this GCS link is active
bool initialised;
protected:
/// The stream we are communicating over
AP_HAL::UARTDriver * _port;
};
//
// GCS class definitions.
//
// These are here so that we can declare the GCS object early in the sketch
// and then reference it statically rather than via a pointer.
//
///
/// @class GCS_MAVLINK
/// @brief The mavlink protocol for qgroundcontrol
///
class GCS_MAVLINK : public GCS_Class
{
public:
GCS_MAVLINK();
void update(void (*run_cli)(AP_HAL::UARTDriver *));
void init(AP_HAL::UARTDriver *port);
void setup_uart(AP_HAL::UARTDriver *port, uint32_t baudrate, uint16_t rxS, uint16_t txS);
void send_message(enum ap_message id);
void send_text(gcs_severity severity, const char *str);
void send_text_P(gcs_severity severity, const prog_char_t *str);
void data_stream_send(void);
void queued_param_send();
void queued_waypoint_send();
static const struct AP_Param::GroupInfo var_info[];
// NOTE! The streams enum below and the
// set of AP_Int16 stream rates _must_ be
// kept in the same order
enum streams {STREAM_RAW_SENSORS,
STREAM_EXTENDED_STATUS,
STREAM_RC_CHANNELS,
STREAM_RAW_CONTROLLER,
STREAM_POSITION,
STREAM_EXTRA1,
STREAM_EXTRA2,
STREAM_EXTRA3,
STREAM_PARAMS,
NUM_STREAMS};
// see if we should send a stream now. Called at 50Hz
bool stream_trigger(enum streams stream_num);
// this costs us 51 bytes per instance, but means that low priority
// messages don't block the CPU
mavlink_statustext_t pending_status;
// call to reset the timeout window for entering the cli
void reset_cli_timeout();
uint32_t last_heartbeat_time; // milliseconds
// last time we got a non-zero RSSI from RADIO_STATUS
static uint32_t last_radio_status_remrssi_ms;
// common send functions
void send_meminfo(void);
void send_power_status(void);
void send_ahrs2(AP_AHRS &ahrs);
bool send_gps_raw(AP_GPS &gps);
void send_system_time(AP_GPS &gps);
void send_radio_in(uint8_t receiver_rssi);
void send_raw_imu(const AP_InertialSensor &ins, const Compass &compass);
void send_scaled_pressure(AP_Baro &barometer);
void send_sensor_offsets(const AP_InertialSensor &ins, const Compass &compass, AP_Baro &barometer);
void send_ahrs(AP_AHRS &ahrs);
// return a bitmap of active channels. Used by libraries to loop
// over active channels to send to all active channels
static uint8_t active_channel_mask(void) { return mavlink_active; }
private:
void handleMessage(mavlink_message_t * msg);
/// Perform queued sending operations
///
AP_Param * _queued_parameter; ///< next parameter to
// be sent in queue
enum ap_var_type _queued_parameter_type; ///< type of the next
// parameter
AP_Param::ParamToken _queued_parameter_token; ///AP_Param token for
// next() call
uint16_t _queued_parameter_index; ///< next queued
// parameter's index
uint16_t _queued_parameter_count; ///< saved count of
// parameters for
// queued send
uint32_t _queued_parameter_send_time_ms;
/// Count the number of reportable parameters.
///
/// Not all parameters can be reported via MAVlink. We count the number
// that are
/// so that we can report to a GCS the number of parameters it should
// expect when it
/// requests the full set.
///
/// @return The number of reportable parameters.
///
uint16_t _count_parameters(); ///< count reportable
// parameters
uint16_t _parameter_count; ///< cache of reportable
// parameters
mavlink_channel_t chan;
uint16_t packet_drops;
#if CLI_ENABLED == ENABLED
// this allows us to detect the user wanting the CLI to start
uint8_t crlf_count;
#endif
// waypoints
uint16_t waypoint_request_i; // request index
uint16_t waypoint_request_last; // last request index
uint16_t waypoint_dest_sysid; // where to send requests
uint16_t waypoint_dest_compid; // "
bool waypoint_receiving; // currently receiving
uint16_t waypoint_count;
uint32_t waypoint_timelast_receive; // milliseconds
uint32_t waypoint_timelast_request; // milliseconds
const uint16_t waypoint_receive_timeout; // milliseconds
// saveable rate of each stream
AP_Int16 streamRates[NUM_STREAMS];
// number of 50Hz ticks until we next send this stream
uint8_t stream_ticks[NUM_STREAMS];
// number of extra ticks to add to slow things down for the radio
uint8_t stream_slowdown;
// millis value to calculate cli timeout relative to.
// exists so we can separate the cli entry time from the system start time
uint32_t _cli_timeout;
uint8_t _log_listing:1; // sending log list
uint8_t _log_sending:1; // sending log data
// next log list entry to send
uint16_t _log_next_list_entry;
// last log list entry to send
uint16_t _log_last_list_entry;
// number of log files
uint16_t _log_num_logs;
// log number for data send
uint16_t _log_num_data;
// offset in log
uint32_t _log_data_offset;
// size of log file
uint32_t _log_data_size;
// number of bytes left to send
uint32_t _log_data_remaining;
// start page of log data
uint16_t _log_data_page;
// deferred message handling
enum ap_message deferred_messages[MSG_RETRY_DEFERRED];
uint8_t next_deferred_message;
uint8_t num_deferred_messages;
// bitmask of what mavlink channels are active
static uint8_t mavlink_active;
// vehicle specific message send function
bool try_send_message(enum ap_message id);
void handle_guided_request(AP_Mission::Mission_Command &cmd);
void handle_change_alt_request(AP_Mission::Mission_Command &cmd);
void handle_log_request_list(mavlink_message_t *msg, DataFlash_Class &dataflash);
void handle_log_request_data(mavlink_message_t *msg, DataFlash_Class &dataflash);
void handle_log_message(mavlink_message_t *msg, DataFlash_Class &dataflash);
void handle_log_send(DataFlash_Class &dataflash);
void handle_log_send_listing(DataFlash_Class &dataflash);
bool handle_log_send_data(DataFlash_Class &dataflash);
void handle_mission_request_list(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_request(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_set_current(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_count(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_clear_all(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_write_partial_list(AP_Mission &mission, mavlink_message_t *msg);
void handle_mission_item(mavlink_message_t *msg, AP_Mission &mission);
void handle_request_data_stream(mavlink_message_t *msg, bool save);
void handle_param_request_list(mavlink_message_t *msg);
void handle_param_request_read(mavlink_message_t *msg);
void handle_param_set(mavlink_message_t *msg, DataFlash_Class *DataFlash);
void handle_radio_status(mavlink_message_t *msg, DataFlash_Class &dataflash, bool log_radio);
void handle_serial_control(mavlink_message_t *msg, AP_GPS &gps);
void lock_channel(mavlink_channel_t chan, bool lock);
// return true if this channel has hardware flow control
bool have_flow_control(void);
};
#endif // __GCS_H