Ardupilot2/libraries/SITL/SIM_MS5611.cpp
2021-07-14 17:46:15 +10:00

94 lines
2.6 KiB
C++

#include "SIM_MS5611.h"
#include <SITL/SITL.h>
#include <stdio.h>
using namespace SITL;
// forward conversion, copied from driver:
void MS5611::convert_forward(int32_t D1, int32_t D2, float &P_Pa, float &Temp_C)
{
float dT;
float TEMP;
float OFF;
float SENS;
dT = D2-(((uint32_t)prom[5])<<8);
TEMP = (dT * prom[6])/8388608;
OFF = prom[2] * 65536.0f + (prom[4] * dT) / 128;
SENS = prom[1] * 32768.0f + (prom[3] * dT) / 256;
TEMP += 2000;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = sq(TEMP-2000.0);
float OFF2 = 2.5f*Aux;
float SENS2 = 1.25f*Aux;
if (TEMP < -1500) {
// extra compensation for temperatures below -15C
OFF2 += 7 * sq(TEMP+1500);
SENS2 += sq(TEMP+1500) * 11.0*0.5;
}
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
P_Pa = (D1*SENS/2097152 - OFF)/32768;
Temp_C = TEMP * 0.01f;
}
void MS5611::convert(float P_Pa, float Temp_C, uint32_t &D1, uint32_t &D2)
{
int64_t TEMP = Temp_C * 100.0f;
const float dT = (TEMP-2000.0) / (prom[6]/8388608.0);
float OFF = prom[2] * 65536.0f + (prom[4] * dT) / 128;
float SENS = prom[1] * 32768.0f + (prom[3] * dT) / 256;
if (TEMP < 2000) {
// second order temperature compensation when under 20 degrees C
float T2 = (dT*dT) / 0x80000000;
float Aux = sq(TEMP-2000.0);
float OFF2 = 2.5f*Aux;
float SENS2 = 1.25f*Aux;
if (TEMP < -1500) {
// extra compensation for temperatures below -15C
OFF2 += 7 * sq(TEMP+1500);
SENS2 += sq(TEMP+1500) * 11.0*0.5;
}
TEMP = TEMP - T2;
OFF = OFF - OFF2;
SENS = SENS - SENS2;
}
D1 = ((P_Pa*32768.0)+OFF) / (SENS/2097152.0);
D2 = dT + (((uint32_t)prom[5])<<8);
float f_P_Pa;
float f_Temp_C;
convert_forward(D1, D2, f_P_Pa, f_Temp_C);
if (fabs(f_P_Pa - P_Pa) > 1) {
AP_HAL::panic("Invalid pressure conversion");
}
if (fabs(f_Temp_C - Temp_C) > 0.1) {
AP_HAL::panic("Invalid temperature conversion");
}
}
void MS5611::get_pressure_temperature_readings(float &P_Pa, float &Temp_C)
{
float sigma, delta, theta;
float sim_alt = AP::sitl()->state.altitude;
sim_alt += 2 * rand_float();
AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta);
P_Pa = SSL_AIR_PRESSURE * delta;
Temp_C = (30.0 + C_TO_KELVIN) * theta - C_TO_KELVIN; // Assume 30 degrees at sea level - converted to degrees Kelvin
}