/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. * * Code by Charles "Silvanosky" Villard and David "Buzz" Bussenschutt * */ #include "RCOutput.h" #include <AP_Common/AP_Common.h> #include <AP_HAL/AP_HAL.h> #include <AP_Math/AP_Math.h> #include <AP_BoardConfig/AP_BoardConfig.h> #include "driver/rtc_io.h" #include <stdio.h> extern const AP_HAL::HAL& hal; using namespace ESP32; #ifdef HAL_ESP32_RCOUT gpio_num_t outputs_pins[] = HAL_ESP32_RCOUT; //If the RTC source is not required, then GPIO32/Pin12/32K_XP and GPIO33/Pin13/32K_XN can be used as digital GPIOs. #else gpio_num_t outputs_pins[] = {}; #endif #define MAX_CHANNELS ARRAY_SIZE(outputs_pins) struct RCOutput::pwm_out RCOutput::pwm_group_list[MAX_CHANNELS]; void RCOutput::init() { _max_channels = MAX_CHANNELS; //32 and 33 are special as they dont default to gpio, but can be if u disable their rtc setup: rtc_gpio_deinit(GPIO_NUM_32); rtc_gpio_deinit(GPIO_NUM_33); printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n"); printf("RCOutput::init() - channels available: %d \n",(int)MAX_CHANNELS); printf("oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo\n"); static const mcpwm_io_signals_t signals[] = { MCPWM0A, MCPWM0B, MCPWM1A, MCPWM1B, MCPWM2A, MCPWM2B }; static const mcpwm_timer_t timers[] = { MCPWM_TIMER_0, MCPWM_TIMER_1, MCPWM_TIMER_2 }; static const mcpwm_unit_t units[] = { MCPWM_UNIT_0, MCPWM_UNIT_1 }; static const mcpwm_operator_t operators[] = { MCPWM_OPR_A, MCPWM_OPR_B }; for (uint8_t i = 0; i < MAX_CHANNELS; ++i) { auto unit = units[i/6]; auto signal = signals[i % 6]; auto timer = timers[i/2]; //Save struct infos pwm_out &out = pwm_group_list[i]; out.gpio_num = outputs_pins[i]; out.unit_num = unit; out.timer_num = timer; out.io_signal = signal; out.op = operators[i%2]; out.chan = i; //Setup gpio mcpwm_gpio_init(unit, signal, outputs_pins[i]); //Setup MCPWM module mcpwm_config_t pwm_config; pwm_config.frequency = 50; //frequency = 50Hz, i.e. for every servo motor time period should be 20ms pwm_config.cmpr_a = 0; //duty cycle of PWMxA = 0 pwm_config.cmpr_b = 0; //duty cycle of PWMxb = 0 pwm_config.counter_mode = MCPWM_UP_COUNTER; pwm_config.duty_mode = MCPWM_DUTY_MODE_0; mcpwm_init(unit, timer, &pwm_config); mcpwm_start(unit, timer); } _initialized = true; } void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) { if (!_initialized) { return; } for (uint8_t i = 0; i < MAX_CHANNELS; i++) { if (chmask & 1 << i) { pwm_out &out = pwm_group_list[i]; mcpwm_set_frequency(out.unit_num, out.timer_num, freq_hz); } } } void RCOutput::set_default_rate(uint16_t freq_hz) { if (!_initialized) { return; } set_freq(0xFFFFFFFF, freq_hz); } uint16_t RCOutput::get_freq(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return 50; } pwm_out &out = pwm_group_list[chan]; return mcpwm_get_frequency(out.unit_num, out.timer_num); } void RCOutput::enable_ch(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return; } pwm_out &out = pwm_group_list[chan]; mcpwm_start(out.unit_num, out.timer_num); } void RCOutput::disable_ch(uint8_t chan) { if (!_initialized || chan >= MAX_CHANNELS) { return; } write(chan, 0); pwm_out &out = pwm_group_list[chan]; mcpwm_stop(out.unit_num, out.timer_num); } void RCOutput::write(uint8_t chan, uint16_t period_us) { if (!_initialized || chan >= MAX_CHANNELS) { return; } if (_corked) { _pending[chan] = period_us; _pending_mask |= (1U<<chan); } else { write_int(chan, period_us); } } uint16_t RCOutput::read(uint8_t chan) { if (chan >= MAX_CHANNELS || !_initialized) { return 0; } pwm_out &out = pwm_group_list[chan]; double freq = mcpwm_get_frequency(out.unit_num, out.timer_num); double dprc = mcpwm_get_duty(out.unit_num, out.timer_num, out.op); return (1000000.0 * (dprc / 100.)) / freq; } void RCOutput::read(uint16_t *period_us, uint8_t len) { for (int i = 0; i < MIN(len, _max_channels); i++) { period_us[i] = read(i); } } void RCOutput::cork() { _corked = true; } void RCOutput::push() { if (!_corked) { return; } bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED; for (uint8_t i = 0; i < MAX_CHANNELS; i++) { if ((1U<<i) & _pending_mask) { uint32_t period_us = _pending[i]; // If safety is on and safety mask not bypassing if (safety_on && !(safety_mask & (1U<<(i)))) { // safety is on, overwride pwm period_us = safe_pwm[i]; } write_int(i, period_us); } } _corked = false; } void RCOutput::timer_tick(void) { safety_update(); } void RCOutput::write_int(uint8_t chan, uint16_t period_us) { if (!_initialized || chan >= MAX_CHANNELS) { return; } bool safety_on = hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED; if (safety_on && !(safety_mask & (1U<<(chan)))) { // safety is on, overwride pwm period_us = safe_pwm[chan]; } pwm_out &out = pwm_group_list[chan]; mcpwm_set_duty_in_us(out.unit_num, out.timer_num, out.op, period_us); } /* get safety switch state for Util.cpp */ AP_HAL::Util::safety_state RCOutput::_safety_switch_state(void) { if (!hal.util->was_watchdog_reset()) { hal.util->persistent_data.safety_state = safety_state; } return safety_state; } /* force the safety switch on, disabling PWM output from the IO board */ bool RCOutput::force_safety_on(void) { safety_state = AP_HAL::Util::SAFETY_DISARMED; return true; } /* force the safety switch off, enabling PWM output from the IO board */ void RCOutput::force_safety_off(void) { safety_state = AP_HAL::Util::SAFETY_ARMED; } /* set PWM to send to a set of channels when the safety switch is in the safe state */ void RCOutput::set_safety_pwm(uint32_t chmask, uint16_t period_us) { for (uint8_t i=0; i<16; i++) { if (chmask & (1U<<i)) { safe_pwm[i] = period_us; } } } /* update safety state */ void RCOutput::safety_update(void) { uint32_t now = AP_HAL::millis(); if (now - safety_update_ms < 100) { // update safety at 10Hz return; } safety_update_ms = now; AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton(); if (boardconfig) { // remember mask of channels to allow with safety on safety_mask = boardconfig->get_safety_mask(); } #ifdef HAL_GPIO_PIN_SAFETY_IN //TODO replace palReadLine // handle safety button bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_IN); if (safety_pressed) { AP_BoardConfig *brdconfig = AP_BoardConfig::get_singleton(); if (safety_press_count < 255) { safety_press_count++; } if (brdconfig && brdconfig->safety_button_handle_pressed(safety_press_count)) { if (safety_state ==AP_HAL::Util::SAFETY_ARMED) { safety_state = AP_HAL::Util::SAFETY_DISARMED; } else { safety_state = AP_HAL::Util::SAFETY_ARMED; } } } else { safety_press_count = 0; } #endif #ifdef HAL_GPIO_PIN_LED_SAFETY led_counter = (led_counter+1) % 16; const uint16_t led_pattern = safety_state==AP_HAL::Util::SAFETY_DISARMED?0x5500:0xFFFF; palWriteLine(HAL_GPIO_PIN_LED_SAFETY, (led_pattern & (1U << led_counter))?0:1); //TODO replace palReadwrite #endif } /* set PWM to send to a set of channels if the FMU firmware dies */ void RCOutput::set_failsafe_pwm(uint32_t chmask, uint16_t period_us) { //RIP (not the pointer) }