/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer */ #include "AC_AutoTune_Heli.h" #define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 2000 // target roll/pitch angle during AUTOTUNE FeedForward rate test #define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test #define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing #define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing #define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing #define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing #define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term #define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term #define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term #define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing #define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value #define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value #define AUTOTUNE_RLPF_MAX 20.0f // maximum Rate Yaw filter value #define AUTOTUNE_RP_MIN 0.001f // minimum Rate P value #define AUTOTUNE_RP_MAX 0.3f // maximum Rate P value #define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value #define AUTOTUNE_SP_MIN 3.0f // maximum Stab P value #define AUTOTUNE_RFF_MAX 0.5f // maximum Stab P value #define AUTOTUNE_RFF_MIN 0.025f // maximum Stab P value #define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in #define AUTOTUNE_SEQ_BITMASK_VFF 1 #define AUTOTUNE_SEQ_BITMASK_RATE_D 2 #define AUTOTUNE_SEQ_BITMASK_ANGLE_P 4 #define AUTOTUNE_SEQ_BITMASK_MAX_GAIN 8 const AP_Param::GroupInfo AC_AutoTune_Heli::var_info[] = { // @Param: AXES // @DisplayName: Autotune axis bitmask // @Description: 1-byte bitmap of axes to autotune // @Bitmask: 0:Roll,1:Pitch,2:Yaw // @User: Standard AP_GROUPINFO("AXES", 1, AC_AutoTune_Heli, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT // @Param: SEQ // @DisplayName: AutoTune Sequence Bitmask // @Description: 2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D Only,4:Angle P Only,8:Max Gain Only,3:VFF and Rate D (incl max gain),5:VFF and Angle P,13:VFF max gain and angle P // @Bitmask: 0:VFF,1:Rate D,2:Angle P,3:Max Gain Only // @User: Standard AP_GROUPINFO("SEQ", 2, AC_AutoTune_Heli, seq_bitmask, 5), // @Param: MIN_FRQ // @DisplayName: AutoTune minimum sweep frequency // @Description: Defines the start frequency for sweeps and dwells // @Range: 10 30 // @User: Standard AP_GROUPINFO("MIN_FRQ", 3, AC_AutoTune_Heli, min_sweep_freq, 10.0f), // @Param: MAX_FRQ // @DisplayName: AutoTune maximum sweep frequency // @Description: Defines the end frequency for sweeps and dwells // @Range: 50 120 // @User: Standard AP_GROUPINFO("MAX_FRQ", 4, AC_AutoTune_Heli, max_sweep_freq, 70.0f), // @Param: MAX_GN // @DisplayName: AutoTune maximum response gain // @Description: Defines the response gain (output/input) to tune // @Range: 1 2.5 // @User: Standard AP_GROUPINFO("MAX_GN", 5, AC_AutoTune_Heli, max_resp_gain, 1.4f), // @Param: VELXY_P // @DisplayName: AutoTune velocity xy P gain // @Description: Velocity xy P gain used to hold position during Max Gain, Rate P, and Rate D frequency sweeps // @Range: 0 1 // @User: Standard AP_GROUPINFO("VELXY_P", 6, AC_AutoTune_Heli, vel_hold_gain, 0.1f), AP_GROUPEND }; // constructor AC_AutoTune_Heli::AC_AutoTune_Heli() { tune_seq[0] = TUNE_COMPLETE; AP_Param::setup_object_defaults(this, var_info); } // initialize tests for each tune type void AC_AutoTune_Heli::test_init() { if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) { rate_ff_test_init(); step_time_limit_ms = 10000; } else if (tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP) { // initialize start frequency and determine gain function when dwell test is used if (is_zero(start_freq)) { if (test_phase[12] > 160.0f && test_phase[12] < 180.0f && tune_type == RP_UP) { freq_cnt = 12; curr_test_freq = test_freq[12]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } else if (method == 1 && tune_type == RP_UP) { freq_cnt = 12; test_freq[12] = sweep.maxgain_freq; curr_test_freq = test_freq[12]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } else if (!is_zero(max_rate_p.freq) && tune_type == RP_UP) { freq_cnt = 12; test_freq[12] = max_rate_p.freq; curr_test_freq = test_freq[12]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } else if (tune_type == MAX_GAINS || tune_type == RD_UP) { start_freq = min_sweep_freq; stop_freq = max_sweep_freq; method = 0; //reset the method for rate D and rate P tuning. } else { test_freq[0] = 2.0f * 3.14159f * 2.0f; curr_test_freq = test_freq[0]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } } if (!is_equal(start_freq,stop_freq)) { // initialize determine_gain function whenever test is initialized freqresp_rate.init(AC_AutoTune_FreqResp::InputType::SWEEP); dwell_test_init(stop_freq); } else { // initialize determine_gain function whenever test is initialized freqresp_rate.init(AC_AutoTune_FreqResp::InputType::DWELL); dwell_test_init(start_freq); } if (!is_zero(start_freq)) { // 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it. step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq); } } else if (tune_type == SP_UP) { // initialize start frequency when dwell test is used if (is_zero(start_freq)) { test_freq[0] = 1.5f * 3.14159f * 2.0f; curr_test_freq = test_freq[0]; test_accel_max = 0.0f; start_freq = min_sweep_freq; stop_freq = max_sweep_freq; } if (!is_equal(start_freq,stop_freq)) { // initialize determine gain function freqresp_angle.init(AC_AutoTune_FreqResp::InputType::SWEEP); dwell_test_init(stop_freq); } else { // initialize determine gain function freqresp_angle.init(AC_AutoTune_FreqResp::InputType::DWELL); dwell_test_init(start_freq); } // TODO add time limit for sweep test if (!is_zero(start_freq)) { // 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it. step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq); } } else { } start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific } // run tests for each tune type void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign) { if (tune_type == SP_UP) { angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); } else if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) { rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign); } else if (tune_type == RP_UP || tune_type == RD_UP) { dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); } else if (tune_type == MAX_GAINS) { dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]); } else if (tune_type == TUNE_COMPLETE) { return; } else { step = UPDATE_GAINS; } } // heli specific gcs announcements void AC_AutoTune_Heli::do_gcs_announcements() { const uint32_t now = AP_HAL::millis(); if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) { return; } float tune_rp = 0.0f; float tune_rd = 0.0f; float tune_rff = 0.0f; float tune_sp = 0.0f; float tune_accel = 0.0f; char axis_char = '?'; switch (axis) { case ROLL: tune_rp = tune_roll_rp; tune_rd = tune_roll_rd; tune_rff = tune_roll_rff; tune_sp = tune_roll_sp; tune_accel = tune_roll_accel; axis_char = 'R'; break; case PITCH: tune_rp = tune_pitch_rp; tune_rd = tune_pitch_rd; tune_rff = tune_pitch_rff; tune_sp = tune_pitch_sp; tune_accel = tune_pitch_accel; axis_char = 'P'; break; case YAW: tune_rp = tune_yaw_rp; tune_rd = tune_yaw_rd; tune_rff = tune_yaw_rff; tune_sp = tune_yaw_sp; tune_accel = tune_yaw_accel; axis_char = 'Y'; break; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string()); send_step_string(); switch (tune_type) { case RD_UP: // gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)tune_rd); break; case RD_DOWN: case RP_DOWN: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd); break; case RP_UP: // gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)tune_rp); break; case RFF_UP: if (!is_zero(test_rate_filt)) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt)); } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff); break; case RFF_DOWN: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff); break; case SP_DOWN: case SP_UP: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel); break; case MAX_GAINS: case TUNE_COMPLETE: break; } // gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT); announce_time = now; } // load_test_gains - load the to-be-tested gains for a single axis // called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) void AC_AutoTune_Heli::load_test_gains() { switch (axis) { case ROLL: if (tune_type == SP_UP) { attitude_control->get_rate_roll_pid().kI(orig_roll_ri); } else { // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_roll_pid().kI(0.01f * orig_roll_ri); } if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) { attitude_control->get_rate_roll_pid().kP(0.0f); attitude_control->get_rate_roll_pid().kD(0.0f); } else { attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); } attitude_control->get_rate_roll_pid().ff(tune_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(0.0f); attitude_control->get_angle_roll_p().kP(tune_roll_sp); break; case PITCH: if (tune_type == SP_UP) { attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); } else { // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_pitch_pid().kI(0.01f * orig_pitch_ri); } if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) { attitude_control->get_rate_pitch_pid().kP(0.0f); attitude_control->get_rate_pitch_pid().kD(0.0f); } else { attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); } attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(0.0f); attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); break; case YAW: // freeze integrator to hold trim by making i term small during rate controller tuning attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f); attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd); attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(0.0f); attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); break; } } // save_tuning_gains - save the final tuned gains for each axis // save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) void AC_AutoTune_Heli::save_tuning_gains() { // see if we successfully completed tuning of at least one axis if (axes_completed == 0) { return; } if (!attitude_control->get_bf_feedforward()) { attitude_control->bf_feedforward_save(true); attitude_control->save_accel_roll_max_cdss(0.0f); attitude_control->save_accel_pitch_max_cdss(0.0f); } // sanity check the rate P values if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) { // rate roll gains attitude_control->get_rate_roll_pid().kP(tune_roll_rp); attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_roll_pid().kD(tune_roll_rd); attitude_control->get_rate_roll_pid().ff(tune_roll_rff); attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); attitude_control->get_rate_roll_pid().save_gains(); // stabilize roll attitude_control->get_angle_roll_p().kP(tune_roll_sp); attitude_control->get_angle_roll_p().save_gains(); // acceleration roll attitude_control->save_accel_roll_max_cdss(tune_roll_accel); // resave pids to originals in case the autotune is run again orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); orig_roll_sp = attitude_control->get_angle_roll_p().kP(); orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) { // rate pitch gains attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL); attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); attitude_control->get_rate_pitch_pid().save_gains(); // stabilize pitch attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); attitude_control->get_angle_pitch_p().save_gains(); // acceleration pitch attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel); // resave pids to originals in case the autotune is run again orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); } if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { // rate yaw gains attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL); attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd); attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); attitude_control->get_rate_yaw_pid().save_gains(); // stabilize yaw attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); attitude_control->get_angle_yaw_p().save_gains(); // acceleration yaw attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel); // resave pids to originals in case the autotune is run again orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); } // update GCS and log save gains event update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS); reset(); } // update gains for the rate p up tune type void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis) { float p_gain = 0.0f; switch (test_axis) { case ROLL: p_gain = tune_roll_rp; break; case PITCH: p_gain = tune_pitch_rp; break; case YAW: p_gain = tune_yaw_rp; break; } // announce results of dwell and update gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(p_gain)); switch (test_axis) { case ROLL: updating_rate_p_up(tune_roll_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; case PITCH: updating_rate_p_up(tune_pitch_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; case YAW: updating_rate_p_up(tune_yaw_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p); break; } } // update gains for the rate d up tune type void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis) { float d_gain = 0.0f; switch (test_axis) { case ROLL: d_gain = tune_roll_rd; break; case PITCH: d_gain = tune_pitch_rd; break; case YAW: d_gain = tune_yaw_rd; break; } // announce results of dwell and update gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(d_gain)); switch (test_axis) { case ROLL: updating_rate_d_up(tune_roll_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; case PITCH: updating_rate_d_up(tune_pitch_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; case YAW: updating_rate_d_up(tune_yaw_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d); break; } } // update gains for the rate ff up tune type void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis) { switch (test_axis) { case ROLL: updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); break; case PITCH: updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); break; case YAW: updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt); // TODO make FF updating routine determine when to set rff gain to zero based on A/C response if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) { tune_yaw_rff = 0.0f; } break; } } // update gains for the angle p up tune type void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis) { // announce results of dwell and update gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt])); gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: phase=%f accel=%f", (double)(test_phase[freq_cnt]), (double)(test_accel_max)); switch (test_axis) { case ROLL: updating_angle_p_up(tune_roll_sp, test_freq, test_gain, test_phase, freq_cnt); break; case PITCH: updating_angle_p_up(tune_pitch_sp, test_freq, test_gain, test_phase, freq_cnt); break; case YAW: updating_angle_p_up(tune_yaw_sp, test_freq, test_gain, test_phase, freq_cnt); break; } } // update gains for the max gain tune type void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis) { // announce results of dwell and update gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt])); switch (test_axis) { case ROLL: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd); break; case PITCH: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd); break; case YAW: updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd); // rate P and rate D can be non zero for yaw and need to be included in the max allowed gain if (!is_zero(max_rate_p.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) { max_rate_p.max_allowed += tune_yaw_rp; } if (!is_zero(max_rate_d.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) { max_rate_d.max_allowed += tune_yaw_rd; } break; } } // updating_rate_ff_up - adjust FF to ensure the target is reached // FF is adjusted until rate requested is acheived void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command) { if (ff_up_first_iter) { if (!is_zero(meas_rate)) { tune_ff = 5730.0f * meas_command / meas_rate; } tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); ff_up_first_iter = false; } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) && fabsf(meas_rate) > 0.95f * fabsf(rate_target)) { if (!first_dir_complete) { first_dir_rff = tune_ff; first_dir_complete = true; positive_direction = !positive_direction; } else { counter = AUTOTUNE_SUCCESS_COUNT; tune_ff = 0.95f * 0.5 * (tune_ff + first_dir_rff); tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); ff_up_first_iter = true; first_dir_complete = false; } } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) { tune_ff = 0.98f * tune_ff; if (tune_ff <= AUTOTUNE_RFF_MIN) { tune_ff = AUTOTUNE_RFF_MIN; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); ff_up_first_iter = true; first_dir_complete = false; } } else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) { tune_ff = 1.02f * tune_ff; if (tune_ff >= AUTOTUNE_RFF_MAX) { tune_ff = AUTOTUNE_RFF_MAX; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); ff_up_first_iter = true; first_dir_complete = false; } } else { if (!is_zero(meas_rate)) { tune_ff = 5730.0f * meas_command / meas_rate; } tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX); } } // updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not exceed exceed max response gain void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p) { float test_freq_incr = 0.25f * 3.14159f * 2.0f; if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt == 0) { tune_p = max_gain_p.max_allowed * 0.10f; freq_cnt_max = 0; } else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) { rp_prev_good_frq_cnt = frq_cnt; } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { if (phase[frq_cnt] - 360.0f < 180.0f) { rp_prev_good_frq_cnt = frq_cnt; } } else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { freq[frq_cnt] = freq[rp_prev_good_frq_cnt]; curr_test_freq = freq[frq_cnt]; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; curr_test_freq = freq[frq_cnt]; } } else if (is_equal(start_freq,stop_freq) && method == 2) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt])); if (is_zero(tune_p)) { tune_p = 0.05f * max_gain_p.max_allowed; } else if (phase[frq_cnt] > 180.0f) { curr_test_freq = curr_test_freq - 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else if (phase[frq_cnt] < 160.0f) { curr_test_freq = curr_test_freq + 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) { if (gain[frq_cnt] < max_resp_gain && tune_p < 0.6f * max_gain_p.max_allowed) { tune_p += 0.05f * max_gain_p.max_allowed; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and frq_cnt for next test curr_test_freq = freq[0]; frq_cnt = 0; tune_p -= 0.05f * max_gain_p.max_allowed; tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed); // rp_prev_gain = 0.0f; } } // rp_prev_gain = gain[frq_cnt]; } else if (is_equal(start_freq,stop_freq) && method == 1) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt])); if (is_zero(tune_p)) { tune_p = 0.05f * max_gain_p.max_allowed; rp_prev_gain = gain[frq_cnt]; } else if ((gain[frq_cnt] < rp_prev_gain || is_zero(rp_prev_gain)) && tune_p < 0.6f * max_gain_p.max_allowed) { tune_p += 0.05f * max_gain_p.max_allowed; rp_prev_gain = gain[frq_cnt]; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and frq_cnt for next test curr_test_freq = freq[0]; frq_cnt = 0; rp_prev_gain = 0.0f; tune_p -= 0.05f * max_gain_p.max_allowed; tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed); } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test } else { start_freq = curr_test_freq; stop_freq = curr_test_freq; } } // updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response gain is at a minimum void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d) { float test_freq_incr = 0.25f * 3.14159f * 2.0f; if (!is_equal(start_freq,stop_freq)) { frq_cnt = 12; if (sweep.maxgain_freq > sweep.ph180_freq) { // freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr; freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr; freq_cnt_max = frq_cnt; // method = 1; method = 2; } else if (!is_zero(sweep.ph180_freq)) { freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr; // using 180 phase as max gain to start freq_cnt_max = frq_cnt; method = 2; } else { freq[frq_cnt] = 4.0f * M_PI; method = 0; } curr_test_freq = freq[frq_cnt]; } if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt == 0) { tune_d = max_gain_d.max_allowed * 0.25f; freq_cnt_max = 0; } else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) { rd_prev_good_frq_cnt = frq_cnt; } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { if (phase[frq_cnt] - 360.0f < 180.0f) { rd_prev_good_frq_cnt = frq_cnt; } } else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { freq[frq_cnt] = freq[rd_prev_good_frq_cnt]; curr_test_freq = freq[frq_cnt]; method = 2; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; curr_test_freq = freq[frq_cnt]; } } else if (is_equal(start_freq,stop_freq) && method == 2) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt])); if (is_zero(tune_d)) { tune_d = 0.05f * max_gain_d.max_allowed; rd_prev_gain = gain[frq_cnt]; } else if (phase[frq_cnt] > 180.0f) { curr_test_freq = curr_test_freq - 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else if (phase[frq_cnt] < 160.0f) { curr_test_freq = curr_test_freq + 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) { if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) { tune_d += 0.05f * max_gain_d.max_allowed; rd_prev_gain = gain[frq_cnt]; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and frq_cnt for next test curr_test_freq = freq[0]; frq_cnt = 0; rd_prev_gain = 0.0f; tune_d -= 0.05f * max_gain_d.max_allowed; tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed); } } } else if (is_equal(start_freq,stop_freq) && method == 1) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt])); if (is_zero(tune_d)) { tune_d = 0.05f * max_gain_d.max_allowed; rd_prev_gain = gain[frq_cnt]; } else if ((gain[frq_cnt] < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) { tune_d += 0.05f * max_gain_d.max_allowed; rd_prev_gain = gain[frq_cnt]; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and frq_cnt for next test curr_test_freq = freq[0]; frq_cnt = 0; rd_prev_gain = 0.0f; tune_d -= 0.05f * max_gain_d.max_allowed; tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed); } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test } else { start_freq = curr_test_freq; stop_freq = curr_test_freq; } } // updating_angle_p_up - determines maximum angle p gain for pitch and roll void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt) { float test_freq_incr = 0.5f * 3.14159f * 2.0f; float gain_incr = 0.5f; if (!is_equal(start_freq,stop_freq)) { frq_cnt = 12; if (!is_zero(sweep.ph180_freq)) { // freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr; freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr; // using 180 phase as max gain to start freq_cnt_max = frq_cnt; } else { freq[frq_cnt] = 4.0f * M_PI; } curr_test_freq = freq[frq_cnt]; } if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (freq_cnt == 0) { freq_cnt_max = 0; } else if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) { // exceeded max response gain already, reduce tuning gain to remain under max response gain tune_p -= gain_incr; // force counter to stay on frequency freq_cnt -= 1; } else if (gain[freq_cnt] > max_resp_gain && tune_p <= AUTOTUNE_SP_MIN) { // exceeded max response gain at the minimum allowable tuning gain. terminate testing. tune_p = AUTOTUNE_SP_MIN; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); curr_test_freq = freq[0]; freq_cnt = 0; } else if (gain[freq_cnt] > gain[freq_cnt_max]) { freq_cnt_max = freq_cnt; phase_max = phase[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else if (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f) { // must be past peak, continue on to determine angle p freq_cnt = 11; } freq_cnt++; if (freq_cnt == 12) { freq[freq_cnt] = freq[freq_cnt_max]; curr_test_freq = freq[freq_cnt]; } else { freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr; curr_test_freq = freq[freq_cnt]; } } // once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain if (freq_cnt >= 12 && is_equal(start_freq,stop_freq)) { if (gain[freq_cnt] < max_resp_gain && tune_p < AUTOTUNE_SP_MAX && !find_peak) { // keep increasing tuning gain unless phase changes or max response gain is acheived if (phase[freq_cnt]-phase_max > 20.0f && phase[freq_cnt] < 210.0f) { freq[freq_cnt] += 0.5 * test_freq_incr; find_peak = true; } else { tune_p += gain_incr; freq[freq_cnt] = freq[freq_cnt_max]; if (tune_p >= AUTOTUNE_SP_MAX) { tune_p = AUTOTUNE_SP_MAX; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); curr_test_freq = freq[0]; freq_cnt = 0; } } curr_test_freq = freq[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else if (gain[freq_cnt] > 1.1f * max_resp_gain && tune_p > AUTOTUNE_SP_MIN && !find_peak) { tune_p -= gain_incr; } else if (find_peak) { // find the frequency where the response gain is maximum if (gain[freq_cnt] > sp_prev_gain) { freq[freq_cnt] += 0.5 * test_freq_incr; } else { find_peak = false; phase_max = phase[freq_cnt]; } curr_test_freq = freq[freq_cnt]; sp_prev_gain = gain[freq_cnt]; } else { // adjust tuning gain so max response gain is not exceeded if (sp_prev_gain < max_resp_gain && gain[freq_cnt] > max_resp_gain) { float adj_factor = (max_resp_gain - gain[freq_cnt]) / (gain[freq_cnt] - sp_prev_gain); tune_p = tune_p + gain_incr * adj_factor; } counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and freq_cnt for next test curr_test_freq = freq[0]; freq_cnt = 0; } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test } else { start_freq = curr_test_freq; stop_freq = curr_test_freq; } } // updating_angle_p_up_yaw - determines maximum angle p gain for yaw void AC_AutoTune_Heli::updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt) { float test_freq_incr = 0.5f * 3.14159f * 2.0f; if (frq_cnt < 12) { if (frq_cnt == 0) { freq_cnt_max = 0; } else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) { sp_prev_good_frq_cnt = frq_cnt; } else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) { if (phase[frq_cnt] - 360.0f < 180.0f) { sp_prev_good_frq_cnt = frq_cnt; } } else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { freq[frq_cnt] = freq[sp_prev_good_frq_cnt]; curr_test_freq = freq[frq_cnt]; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; curr_test_freq = freq[frq_cnt]; } } // once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain if (freq_cnt >= 12) { if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f && tune_p < AUTOTUNE_SP_MAX) { tune_p += 0.5f; if (tune_p >= AUTOTUNE_SP_MAX) { tune_p = AUTOTUNE_SP_MAX; counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); curr_test_freq = freq[0]; freq_cnt = 0; } } else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] > 180.0f) { curr_test_freq = curr_test_freq - 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] < 160.0f) { curr_test_freq = curr_test_freq + 0.5 * test_freq_incr; freq[frq_cnt] = curr_test_freq; } else { counter = AUTOTUNE_SUCCESS_COUNT; // reset curr_test_freq and frq_cnt for next test curr_test_freq = freq[0]; frq_cnt = 0; } // guard against frequency getting too high or too low if (curr_test_freq > 50.24f || curr_test_freq < 3.14f) { counter = AUTOTUNE_SUCCESS_COUNT; AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT); curr_test_freq = freq[0]; freq_cnt = 0; } } if (counter == AUTOTUNE_SUCCESS_COUNT) { start_freq = 0.0f; //initializes next test that uses dwell test } else { start_freq = curr_test_freq; stop_freq = curr_test_freq; } } // updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d) { float test_freq_incr = 1.0f * M_PI * 2.0f; if (!is_equal(start_freq,stop_freq)) { frq_cnt = 2; if (!is_zero(sweep.ph180_freq)) { freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr; } else { freq[frq_cnt] = 4.0f * M_PI; } curr_test_freq = freq[frq_cnt]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } else if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) { if (frq_cnt > 2 && phase[frq_cnt] > 161.0f && phase[frq_cnt] < 270.0f && !find_middle && !found_max_p) { find_middle = true; } else if (find_middle && !found_max_p) { if (phase[frq_cnt] > 161.0f) { // interpolate between frq_cnt-2 and frq_cnt max_gain_p.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]); max_gain_p.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]); } else { // interpolate between frq_cnt-1 and frq_cnt max_gain_p.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]); max_gain_p.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]); } max_gain_p.phase = 161.0f; max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f); // limit max gain allowed to be no more than 2x the max p gain limit to keep initial gains bounded max_gain_p.max_allowed = constrain_float(max_gain_p.max_allowed, 0.0f, 2.0f * AUTOTUNE_RP_MAX); found_max_p = true; find_middle = false; if (!is_zero(sweep.ph270_freq)) { // set freq cnt back to reinitialize process frq_cnt = 1; // set to 1 because it will be incremented // set frequency back at least one test_freq_incr as it will be added freq[1] = sweep.ph270_freq - 1.5f * test_freq_incr; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f ph=%f rate_p=%f", (double)(max_gain_p.freq), (double)(max_gain_p.gain), (double)(max_gain_p.phase), (double)(max_gain_p.max_allowed)); } if (frq_cnt > 2 && phase[frq_cnt] > 251.0f && phase[frq_cnt] < 360.0f && !find_middle && !found_max_d && found_max_p) { find_middle = true; } else if (find_middle && found_max_p && !found_max_d) { if (phase[frq_cnt] > 251.0f) { // interpolate between frq_cnt-2 and frq_cnt max_gain_d.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]); max_gain_d.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]); } else { // interpolate between frq_cnt-1 and frq_cnt max_gain_d.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]); max_gain_d.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]); } max_gain_d.phase = 251.0f; max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f); // limit max gain allowed to be no more than 2x the max d gain limit to keep initial gains bounded max_gain_d.max_allowed = constrain_float(max_gain_d.max_allowed, 0.0f, 2.0f * AUTOTUNE_RD_MAX); found_max_d = true; find_middle = false; gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f ph=%f rate_d=%f", (double)(max_gain_d.freq), (double)(max_gain_d.gain), (double)(max_gain_d.phase), (double)(max_gain_d.max_allowed)); } // stop progression in frequency. if ((frq_cnt > 1 && phase[frq_cnt] > 330.0f && !is_zero(phase[frq_cnt])) || found_max_d) { frq_cnt = 11; } frq_cnt++; if (frq_cnt == 12) { counter = AUTOTUNE_SUCCESS_COUNT; // reset variables for next test curr_test_freq = freq[0]; frq_cnt = 0; found_max_p = false; found_max_d = false; find_middle = false; // tune_p = 0.35f * max_gain_p.max_allowed; // tune_d = 0.25f * max_gain_d.max_allowed; start_freq = 0.0f; //initializes next test that uses dwell test } else { if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) { // phase greater than 161 deg won't allow max p to be found // reset freq cnt to 2 and lower dwell freq to push phase below 161 deg frq_cnt = 2; freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr; } else if (frq_cnt == 3 && phase[2] >= 251.0f && !found_max_d) { // phase greater than 161 deg won't allow max p to be found // reset freq cnt to 2 and lower dwell freq to push phase below 161 deg frq_cnt = 2; freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr; } else if (find_middle) { freq[frq_cnt] = freq[frq_cnt-1] - 0.5f * test_freq_incr; } else { freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr; } curr_test_freq = freq[frq_cnt]; start_freq = curr_test_freq; stop_freq = curr_test_freq; } } } // log autotune summary data void AC_AutoTune_Heli::Log_AutoTune() { switch (axis) { case ROLL: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max); break; case PITCH: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max); break; case YAW: Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp, test_accel_max); break; } // } } // log autotune time history results for command, angular rate, and attitude void AC_AutoTune_Heli::Log_AutoTuneDetails() { if (tune_type == SP_UP) { Log_Write_AutoTuneDetails(command_out, 0.0f, 0.0f, filt_target_rate, rotation_rate); } else { Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate, 0.0f, 0.0f); } } // log autotune frequency response data void AC_AutoTune_Heli::Log_AutoTuneSweep() { Log_Write_AutoTuneSweep(curr_test_freq, curr_test_gain, curr_test_phase); } // @LoggerMessage: ATNH // @Description: Heli AutoTune // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: Axis: which axis is currently being tuned // @Field: TuneStep: step in autotune process // @Field: Freq: target dwell frequency // @Field: Gain: measured gain of dwell // @Field: Phase: measured phase of dwell // @Field: RFF: new rate gain FF term // @Field: RP: new rate gain P term // @Field: RD: new rate gain D term // @Field: SP: new angle P term // @Field: ACC: new max accel term // Write an Autotune summary data packet void AC_AutoTune_Heli::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel) { AP::logger().Write( "ATNH", "TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP,ACC", "s--E-d-----", "F--000-----", "QBBffffffff", AP_HAL::micros64(), axis, tune_step, dwell_freq, meas_gain, meas_phase, new_gain_rff, new_gain_rp, new_gain_rd, new_gain_sp, max_accel); } // Write an Autotune detailed data packet void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad) { // @LoggerMessage: ATDH // @Description: Heli AutoTune data packet // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: Cmd: current motor command // @Field: TRate: current target angular rate // @Field: Rate: current angular rate // @Field: TAng: current target angle // @Field: Ang: current angle AP::logger().WriteStreaming( "ATDH", "TimeUS,Cmd,TRate,Rate,TAng,Ang", "s-kkdd", "F00000", "Qfffff", AP_HAL::micros64(), motor_cmd, tgt_rate_rads*57.3, rate_rads*57.3f, tgt_ang_rad*57.3, ang_rad*57.3f); } // Write an Autotune frequency response data packet void AC_AutoTune_Heli::Log_Write_AutoTuneSweep(float freq, float gain, float phase) { // @LoggerMessage: ATSH // @Description: Heli AutoTune Sweep packet // @Vehicles: Copter // @Field: TimeUS: Time since system startup // @Field: freq: current frequency // @Field: gain: current response gain // @Field: phase: current response phase AP::logger().WriteStreaming( "ATSH", "TimeUS,freq,gain,phase", "sE-d", "F000", "Qfff", AP_HAL::micros64(), freq, gain, phase); } // get intra test rate I gain for the specified axis float AC_AutoTune_Heli::get_intra_test_ri(AxisType test_axis) { float ret = 0.0f; switch (test_axis) { case ROLL: ret = orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING; break; case PITCH: ret = orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING; break; case YAW: ret = orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING; break; } return ret; } // get tuned rate I gain for the specified axis float AC_AutoTune_Heli::get_tuned_ri(AxisType test_axis) { float ret = 0.0f; switch (test_axis) { case ROLL: ret = tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL; break; case PITCH: ret = tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL; break; case YAW: ret = tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL; break; } return ret; } // get minimum rate P (for any axis) float AC_AutoTune_Heli::get_rp_min() const { return AUTOTUNE_RP_MIN; } // get minimum angle P (for any axis) float AC_AutoTune_Heli::get_sp_min() const { return AUTOTUNE_SP_MIN; } // get minimum rate Yaw filter value float AC_AutoTune_Heli::get_yaw_rate_filt_min() const { return AUTOTUNE_RLPF_MIN; } // set the tuning test sequence void AC_AutoTune_Heli::set_tune_sequence() { uint8_t seq_cnt = 0; if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_VFF) { tune_seq[seq_cnt] = RFF_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D) { tune_seq[seq_cnt] = MAX_GAINS; seq_cnt++; tune_seq[seq_cnt] = RD_UP; seq_cnt++; tune_seq[seq_cnt] = RP_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_ANGLE_P) { tune_seq[seq_cnt] = SP_UP; seq_cnt++; } if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_MAX_GAIN && !(seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D)) { tune_seq[seq_cnt] = MAX_GAINS; seq_cnt++; } tune_seq[seq_cnt] = TUNE_COMPLETE; }