#include "AP_NavEKF2.h" #include "AP_NavEKF2_core.h" #include <AP_Logger/AP_Logger.h> #include <AP_DAL/AP_DAL.h> void NavEKF2_core::Log_Write_NKF1(uint64_t time_us) const { // Write first EKF packet Vector3f euler; Vector2f posNE; float posD; Vector3f velNED; Vector3f gyroBias; float posDownDeriv; Location originLLH; getEulerAngles(euler); getVelNED(velNED); getPosNE(posNE); getPosD(posD); getGyroBias(gyroBias); posDownDeriv = getPosDownDerivative(); if (!getOriginLLH(originLLH)) { originLLH.alt = 0; } const struct log_NKF1 pkt{ LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG), time_us : time_us, core : DAL_CORE(core_index), roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) velN : (float)(velNED.x), // velocity North (m/s) velE : (float)(velNED.y), // velocity East (m/s) velD : (float)(velNED.z), // velocity Down (m/s) posD_dot : (float)(posDownDeriv), // first derivative of down position posN : (float)(posNE.x), // metres North posE : (float)(posNE.y), // metres East posD : (float)(posD), // metres Down gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm }; AP::logger().WriteBlock(&pkt, sizeof(pkt)); } void NavEKF2_core::Log_Write_NKF2(uint64_t time_us) const { // Write second EKF packet float azbias = 0; Vector3f wind; Vector3f magNED; Vector3f magXYZ; Vector3f gyroScaleFactor; getAccelZBias(azbias); getWind(wind); getMagNED(magNED); getMagXYZ(magXYZ); getGyroScaleErrorPercentage(gyroScaleFactor); const struct log_NKF2 pkt2{ LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG), time_us : time_us, core : DAL_CORE(core_index), AZbias : (int8_t)(100*azbias), scaleX : (int16_t)(100*gyroScaleFactor.x), scaleY : (int16_t)(100*gyroScaleFactor.y), scaleZ : (int16_t)(100*gyroScaleFactor.z), windN : (int16_t)(100*wind.x), windE : (int16_t)(100*wind.y), magN : (int16_t)(magNED.x), magE : (int16_t)(magNED.y), magD : (int16_t)(magNED.z), magX : (int16_t)(magXYZ.x), magY : (int16_t)(magXYZ.y), magZ : (int16_t)(magXYZ.z), index : magSelectIndex }; AP::logger().WriteBlock(&pkt2, sizeof(pkt2)); } void NavEKF2_core::Log_Write_NKF3(uint64_t time_us) const { // Write third EKF packet Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov = 0; float yawInnov = 0; getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); const struct log_NKF3 pkt3{ LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG), time_us : time_us, core : DAL_CORE(core_index), innovVN : (int16_t)(100*velInnov.x), innovVE : (int16_t)(100*velInnov.y), innovVD : (int16_t)(100*velInnov.z), innovPN : (int16_t)(100*posInnov.x), innovPE : (int16_t)(100*posInnov.y), innovPD : (int16_t)(100*posInnov.z), innovMX : (int16_t)(magInnov.x), innovMY : (int16_t)(magInnov.y), innovMZ : (int16_t)(magInnov.z), innovYaw : (int16_t)(100*degrees(yawInnov)), innovVT : (int16_t)(100*tasInnov), rerr : 0, // TODO : Relative Error based Lane-Switching like EK3 errorScore : 0 // TODO : Relative Error based Lane-Switching like EK3 }; AP::logger().WriteBlock(&pkt3, sizeof(pkt3)); } void NavEKF2_core::Log_Write_NKF4(uint64_t time_us) const { // Write fourth EKF packet float velVar = 0; float posVar = 0; float hgtVar = 0; Vector3f magVar; float tasVar = 0; Vector2f offset; uint16_t _faultStatus=0; const uint8_t timeoutStatus = posTimeout<<0 | velTimeout<<1 | hgtTimeout<<2 | magTimeout<<3 | tasTimeout<<4; nav_filter_status solutionStatus {}; nav_gps_status gpsStatus {}; getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); ftype tempVar = fmaxF(fmaxF(magVar.x,magVar.y),magVar.z); getFilterFaults(_faultStatus); getFilterStatus(solutionStatus); getFilterGpsStatus(gpsStatus); const struct log_NKF4 pkt4{ LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG), time_us : time_us, core : DAL_CORE(core_index), sqrtvarV : (int16_t)(100*velVar), sqrtvarP : (int16_t)(100*posVar), sqrtvarH : (int16_t)(100*hgtVar), sqrtvarM : (int16_t)(100*tempVar), sqrtvarVT : (int16_t)(100*tasVar), tiltErr : float(tiltErrFilt), // tilt error convergence metric offsetNorth : offset.x, offsetEast : offset.y, faults : _faultStatus, timeouts : (uint8_t)(timeoutStatus), solution : (uint32_t)(solutionStatus.value), gps : (uint16_t)(gpsStatus.value), primary : frontend->getPrimaryCoreIndex() }; AP::logger().WriteBlock(&pkt4, sizeof(pkt4)); } void NavEKF2_core::Log_Write_NKF5(uint64_t time_us) const { if (core_index != frontend->primary) { // log only primary instance for now return; } // Write fifth EKF packet const struct log_NKF5 pkt5{ LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG), time_us : time_us, core : DAL_CORE(core_index), normInnov : (uint8_t)(MIN(100*MAX(flowTestRatio[0],flowTestRatio[1]),255)), // normalised innovation variance ratio for optical flow observations fused by the main nav filter FIX : (int16_t)(1000*innovOptFlow[0]), // optical flow LOS rate vector innovations from the main nav filter FIY : (int16_t)(1000*innovOptFlow[1]), // optical flow LOS rate vector innovations from the main nav filter AFI : (int16_t)(1000 * auxFlowObsInnov.length()), // optical flow LOS rate innovation from terrain offset estimator HAGL : float_to_int16(100*(terrainState - stateStruct.position.z)), // height above ground level offset : (int16_t)(100*terrainState), // // estimated vertical position of the terrain relative to the nav filter zero datum RI : (int16_t)(100*innovRng), // range finder innovations meaRng : (uint16_t)(100*rangeDataDelayed.rng), // measured range errHAGL : (uint16_t)(100*sqrtF(Popt)), // filter ground offset state error angErr : float(outputTrackError.x), velErr : float(outputTrackError.y), posErr : float(outputTrackError.z) }; AP::logger().WriteBlock(&pkt5, sizeof(pkt5)); } void NavEKF2_core::Log_Write_Quaternion(uint64_t time_us) const { // log quaternion Quaternion quat; getQuaternion(quat); const struct log_NKQ pktq1{ LOG_PACKET_HEADER_INIT(LOG_NKQ_MSG), time_us : time_us, core : DAL_CORE(core_index), q1 : quat.q1, q2 : quat.q2, q3 : quat.q3, q4 : quat.q4 }; AP::logger().WriteBlock(&pktq1, sizeof(pktq1)); } #if AP_BEACON_ENABLED void NavEKF2_core::Log_Write_Beacon(uint64_t time_us) { if (core_index != frontend->primary) { // log only primary instance for now return; } if (AP::beacon() == nullptr) { return; } if (!statesInitialised || N_beacons == 0) { return; } // Ensure that beacons are not skipped due to calling this // function at a rate lower than the updates if (rngBcnFuseDataReportIndex >= N_beacons) { rngBcnFuseDataReportIndex = 0; } const rngBcnFusionReport_t &report = rngBcnFusionReport[rngBcnFuseDataReportIndex]; if (report.rng <= 0.0f) { rngBcnFuseDataReportIndex++; return; } struct log_NKF0 pkt0 = { LOG_PACKET_HEADER_INIT(LOG_NKF0_MSG), time_us : time_us, core : DAL_CORE(core_index), ID : rngBcnFuseDataReportIndex, rng : (int16_t)(100*report.rng), innov : (int16_t)(100*report.innov), sqrtInnovVar : (uint16_t)(100*safe_sqrt(report.innovVar)), testRatio : (uint16_t)(100*constrain_ftype(report.testRatio,0.0f,650.0f)), beaconPosN : (int16_t)(100*report.beaconPosNED.x), beaconPosE : (int16_t)(100*report.beaconPosNED.y), beaconPosD : (int16_t)(100*report.beaconPosNED.z), offsetHigh : (int16_t)(100*bcnPosOffsetMax), offsetLow : (int16_t)(100*bcnPosOffsetMin), posN : 0, posE : 0, posD : 0 }; AP::logger().WriteBlock(&pkt0, sizeof(pkt0)); rngBcnFuseDataReportIndex++; } #endif // AP_BEACON_ENABLED void NavEKF2_core::Log_Write_Timing(uint64_t time_us) { // log EKF timing statistics every 5s if (AP::dal().millis() - lastTimingLogTime_ms <= 5000) { return; } lastTimingLogTime_ms = AP::dal().millis(); const struct log_NKT nkt{ LOG_PACKET_HEADER_INIT(LOG_NKT_MSG), time_us : time_us, core : core_index, timing_count : timing.count, dtIMUavg_min : timing.dtIMUavg_min, dtIMUavg_max : timing.dtIMUavg_max, dtEKFavg_min : timing.dtEKFavg_min, dtEKFavg_max : timing.dtEKFavg_max, delAngDT_min : timing.delAngDT_min, delAngDT_max : timing.delAngDT_max, delVelDT_min : timing.delVelDT_min, delVelDT_max : timing.delVelDT_max, }; memset(&timing, 0, sizeof(timing)); AP::logger().WriteBlock(&nkt, sizeof(nkt)); } void NavEKF2::Log_Write() { // only log if enabled if (activeCores() <= 0) { return; } if (lastLogWrite_us == imuSampleTime_us) { // vehicle is doubling up on logging return; } lastLogWrite_us = imuSampleTime_us; const uint64_t time_us = AP::dal().micros64(); // note that several of these functions exit-early if they're not // attempting to log the primary core. for (uint8_t i=0; i<activeCores(); i++) { core[i].Log_Write(time_us); } AP::dal().start_frame(AP_DAL::FrameType::LogWriteEKF2); } void NavEKF2_core::Log_Write(uint64_t time_us) { // note that several of these functions exit-early if they're not // attempting to log the primary core. Log_Write_NKF1(time_us); Log_Write_NKF2(time_us); Log_Write_NKF3(time_us); Log_Write_NKF4(time_us); Log_Write_NKF5(time_us); Log_Write_Quaternion(time_us); Log_Write_GSF(time_us); #if AP_BEACON_ENABLED // write range beacon fusion debug packet if the range value is non-zero Log_Write_Beacon(time_us); #endif Log_Write_Timing(time_us); } void NavEKF2_core::Log_Write_GSF(uint64_t time_us) const { if (yawEstimator == nullptr) { return; } yawEstimator->Log_Write(time_us, LOG_NKY0_MSG, LOG_NKY1_MSG, DAL_CORE(core_index)); }