/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef AC_WPNAV_H #define AC_WPNAV_H #include #include #include #include #include // PID library #include // PID library #include // Inertial Navigation library // loiter maximum velocities and accelerations #define MAX_LOITER_POS_VELOCITY 500 // maximum velocity that our position controller will request. should be 1.5 ~ 2.0 times the pilot input's max velocity. To-Do: make consistent with maximum velocity requested by pilot input to loiter #define MAX_LOITER_POS_ACCEL 250 // defines the velocity vs distant curve. maximum acceleration in cm/s/s that loiter position controller asks for from acceleration controller #define MAX_LOITER_VEL_ACCEL 800 // max acceleration in cm/s/s that the loiter velocity controller will ask from the lower accel controller. // should be 1.5 times larger than MAX_LOITER_POS_ACCEL. // max acceleration = max lean angle * 980 * pi / 180. i.e. 23deg * 980 * 3.141 / 180 = 393 cm/s/s #define MAX_LEAN_ANGLE 4500 // default maximum lean angle #define MAX_LOITER_OVERSHOOT 531 // maximum distance (in cm) that we will allow the target loiter point to be from the current location when switching into loiter // D0 = MAX_LOITER_POS_ACCEL/(2*Pid_P^2); // if MAX_LOITER_POS_VELOCITY > 2*D0*Pid_P // MAX_LOITER_OVERSHOOT = D0 + MAX_LOITER_POS_VELOCITY.^2 ./ (2*MAX_LOITER_POS_ACCEL); // else // MAX_LOITER_OVERSHOOT = min(200, MAX_LOITER_POS_VELOCITY/Pid_P); // to stop it being over sensitive to error // end #define WPNAV_WP_SPEED 500 // default horizontal speed betwen waypoints in cm/s #define WPNAV_WP_RADIUS 200 // default waypoint radius in cm #define WPINAV_MAX_POS_ERROR 531.25f // maximum distance (in cm) that the desired track can stray from our current location. // D0 = MAX_LOITER_POS_ACCEL/(2*Pid_P^2); // if WP_SPEED > 2*D0*Pid_P // WPINAV_MAX_POS_ERROR = D0 + WP_SPEED.^2 ./ (2*MAX_LOITER_POS_ACCEL); // else // WPINAV_MAX_POS_ERROR = min(200, WP_SPEED/Pid_P); // to stop it being over sensitive to error // end // This should use the current waypoint max speed though rather than the default #define MAX_CLIMB_VELOCITY 125 // maximum climb velocity - ToDo: pull this in from main code #define WPINAV_MAX_ALT_ERROR 100.0f // maximum distance (in cm) that the desired track can stray from our current location. // D0 = ALT_HOLD_ACCEL_MAX/(2*Pid_P^2); // if g.pilot_velocity_z_max > 2*D0*Pid_P // WPINAV_MAX_ALT_ERROR = D0 + MAX_CLIMB_VELOCITY.^2 ./ (2*ALT_HOLD_ACCEL_MAX); // else // WPINAV_MAX_ALT_ERROR = min(100, MAX_CLIMB_VELOCITY/Pid_P); // to stop it being over sensitive to error // end class AC_WPNav { public: /// Constructor AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon); /// /// simple loiter controller /// /// get_loiter_target - get loiter target as position vector (from home in cm) Vector3f get_loiter_target() { return _target; } /// set_loiter_target in cm from home void set_loiter_target(const Vector3f& position) { _target = position; } /// set_loiter_target - set initial loiter target based on current position and velocity void set_loiter_target(const Vector3f& position, const Vector3f& velocity); /// move_loiter_target - move destination using pilot input void move_loiter_target(float control_roll, float control_pitch, float dt); /// get_distance_to_target - get horizontal distance to loiter target in cm float get_distance_to_target(); /// get_bearing_to_target - get bearing to loiter target in centi-degrees int32_t get_bearing_to_target(); /// update_loiter - run the loiter controller - should be called at 10hz void update_loiter(); /// set_angle_limit - limits maximum angle in centi-degrees the copter will lean void set_angle_limit(int32_t lean_angle) { _lean_angle_max = lean_angle; } /// clear_angle_limit - reset angle limits back to defaults void clear_angle_limit() { _lean_angle_max = MAX_LEAN_ANGLE; } /// get_angle_limit - retrieve maximum angle in centi-degrees the copter will lean int32_t get_angle_limit() { return _lean_angle_max; } /// /// waypoint controller /// /// get_destination waypoint using position vector (distance from home in cm) Vector3f get_destination() { return _destination; } /// set_destination waypoint using position vector (distance from home in cm) void set_destination(const Vector3f& destination); /// set_origin_and_destination - set origin and destination waypoints using position vectors (distance from home in cm) void set_origin_and_destination(const Vector3f& origin, const Vector3f& destination); /// advance_target_along_track - move target location along track from origin to destination void advance_target_along_track(float velocity_cms, float dt); /// get_distance_to_destination - get horizontal distance to destination in cm float get_distance_to_destination(); /// get_bearing_to_destination - get bearing to next waypoint in centi-degrees int32_t get_bearing_to_destination(); /// reached_destination - true when we have come within RADIUS cm of the waypoint bool reached_destination() { return _reached_destination; } /// update_wp - update waypoint controller void update_wpnav(); /// /// shared methods /// /// get desired roll, pitch which should be fed into stabilize controllers int32_t get_desired_roll() { return _desired_roll; }; int32_t get_desired_pitch() { return _desired_pitch; }; /// get_desired_alt - get desired altitude (in cm above home) from loiter or wp controller which should be fed into throttle controller float get_desired_alt() { return _target.z; } /// set_desired_alt - set desired altitude (in cm above home) void set_desired_alt(float desired_alt) { _target.z = desired_alt; } /// set_cos_sin_yaw - short-cut to save on calculations to convert from roll-pitch frame to lat-lon frame void set_cos_sin_yaw(float cos_yaw, float sin_yaw, float cos_roll) { _cos_yaw = cos_yaw; _sin_yaw = sin_yaw; _cos_roll = cos_roll; } /// set_horizontal_velocity - allows main code to pass target horizontal velocity for wp navigation void set_horizontal_velocity(float velocity_cms) { _speed_cms = velocity_cms; }; /// set_climb_velocity - allows main code to pass max climb velocity to wp navigation void set_climb_velocity(float velocity_cms) { _speedz_cms = velocity_cms; }; /// get_waypoint_radius - access for waypoint radius in cm float get_waypoint_radius() { return _wp_radius_cm; } static const struct AP_Param::GroupInfo var_info[]; protected: /// project_stopping_point - returns vector to stopping point based on a horizontal position and velocity Vector3f project_stopping_point(const Vector3f& position, const Vector3f& velocity); /// translate_loiter_target_movements - consumes adjustments created by move_loiter_target void translate_loiter_target_movements(float nav_dt); /// get_loiter_position_to_velocity - loiter position controller /// converts desired position held in _target vector to desired velocity void get_loiter_position_to_velocity(float dt); /// get_loiter_velocity_to_acceleration - loiter velocity controller /// converts desired velocities in lat/lon directions to accelerations in lat/lon frame void get_loiter_velocity_to_acceleration(float vel_lat_cms, float vel_lon_cms, float dt); /// get_loiter_acceleration_to_lean_angles - loiter acceleration controller /// converts desired accelerations provided in lat/lon frame to roll/pitch angles void get_loiter_acceleration_to_lean_angles(float accel_lat_cmss, float accel_lon_cmss); /// get_bearing_cd - return bearing in centi-degrees between two positions float get_bearing_cd(const Vector3f origin, const Vector3f destination); /// reset_I - clears I terms from loiter PID controller void reset_I(); // pointers to inertial nav library AP_InertialNav* _inav; // pointers to pid controllers APM_PI* _pid_pos_lat; APM_PI* _pid_pos_lon; AC_PID* _pid_rate_lat; AC_PID* _pid_rate_lon; // parameters AP_Float _speed_cms; // default horizontal speed in cm/s float _speedz_cms; // max vertical climb rate in cm/s. To-Do: rename or pull this from main code AP_Float _wp_radius_cm; // distance from a waypoint in cm that, when crossed, indicates the wp has been reached uint32_t _loiter_last_update; // time of last update_loiter call uint32_t _wpnav_last_update; // time of last update_wpnav call float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame float _sin_yaw; float _cos_roll; // output from controller int32_t _desired_roll; // fed to stabilize controllers at 50hz int32_t _desired_pitch; // fed to stabilize controllers at 50hz int32_t _lean_angle_max; // maximum lean angle. can we set from main code so that throttle controller can stop leans that cause copter to lose altitude // internal variables Vector3f _target; // loiter's target location in cm from home Vector3f _target_vel; // loiter Vector3f _vel_last; // previous iterations velocity in cm/s Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP) Vector3f _destination; // target destination in cm from home (equivalent to next_WP) Vector3f _pos_delta_unit; // each axis's percentage of the total track from origin to destination float _track_length; // distance in cm between origin and destination float _track_desired; // our desired distance along the track in cm float _distance_to_target; // distance to loiter target float _vert_track_scale; // vertical scaling to give altitude equal weighting to position bool _reached_destination; // true if we have reached the destination // pilot inputs for loiter int16_t _pilot_vel_forward_cms; int16_t _pilot_vel_right_cms; public: // for logging purposes Vector2f dist_error; // distance error calculated by loiter controller Vector2f desired_vel; // loiter controller desired velocity Vector2f desired_accel; // the resulting desired acceleration // To-Do: add split of fast (100hz for accel->angle) and slow (10hz for navigation) /// update - run the loiter and wpnav controllers - should be called at 100hz //void update_100hz(void); /// update - run the loiter and wpnav controllers - should be called at 10hz //void update_10hz(void); }; #endif // AC_WPNAV_H