/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* Sailboat simulator class see explanation of lift and drag explained here: https://en.wikipedia.org/wiki/Forces_on_sails To-Do: add heel handling by calculating lateral force from wind vs gravity force from heel to arrive at roll rate or acceleration */ #include "SIM_Sailboat.h" #include <AP_Math/AP_Math.h> #include <string.h> #include <stdio.h> namespace SITL { #define STEERING_SERVO_CH 0 // steering controlled by servo output 1 #define MAINSAIL_SERVO_CH 3 // main sail controlled by servo output 4 Sailboat::Sailboat(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str), steering_angle_max(35), turning_circle(1.8) { } // calculate the lift and drag as values from 0 to 1 // given an apparent wind speed in m/s and angle-of-attack in degrees void Sailboat::calc_lift_and_drag(float wind_speed, float angle_of_attack_deg, float& lift, float& drag) const { const uint16_t index_width_deg = 10; const uint8_t index_max = ARRAY_SIZE(lift_curve) - 1; // check extremes if (angle_of_attack_deg <= 0.0f) { lift = lift_curve[0]; drag = drag_curve[0]; } else if (angle_of_attack_deg >= index_max * index_width_deg) { lift = lift_curve[index_max]; drag = drag_curve[index_max]; } else { uint8_t index = constrain_int16(angle_of_attack_deg / index_width_deg, 0, index_max); float remainder = angle_of_attack_deg - (index * index_width_deg); lift = linear_interpolate(lift_curve[index], lift_curve[index+1], remainder, 0.0f, index_width_deg); drag = linear_interpolate(drag_curve[index], drag_curve[index+1], remainder, 0.0f, index_width_deg); } // apply scaling by wind speed lift *= wind_speed; drag *= wind_speed; } // return turning circle (diameter) in meters for steering angle proportion in the range -1 to +1 float Sailboat::get_turn_circle(float steering) const { if (is_zero(steering)) { return 0; } return turning_circle * sinf(radians(steering_angle_max)) / sinf(radians(steering * steering_angle_max)); } // return yaw rate in deg/sec given a steering input (in the range -1 to +1) and speed in m/s float Sailboat::get_yaw_rate(float steering, float speed) const { if (is_zero(steering) || is_zero(speed)) { return 0; } float d = get_turn_circle(steering); float c = M_PI * d; float t = c / speed; float rate = 360.0f / t; return rate; } // return lateral acceleration in m/s/s given a steering input (in the range -1 to +1) and speed in m/s float Sailboat::get_lat_accel(float steering, float speed) const { float yaw_rate = get_yaw_rate(steering, speed); float accel = radians(yaw_rate) * speed; return accel; } /* update the sailboat simulation by one time step */ void Sailboat::update(const struct sitl_input &input) { // update wind update_wind(input); // in sailboats the steering controls the rudder, the throttle controls the main sail position float steering = 2*((input.servos[STEERING_SERVO_CH]-1000)/1000.0f - 0.5f); // calculate mainsail angle from servo output 4, 0 to 90 degrees float mainsail_angle_bf = constrain_float((input.servos[MAINSAIL_SERVO_CH]-1000)/1000.0f * 90.0f, 0.0f, 90.0f); // calculate apparent wind in earth-frame (this is the direction the wind is coming from) // Note than the SITL wind direction is defined as the direction the wind is travelling to // This is accounted for in these calculations Vector3f wind_apparent_ef = wind_ef + velocity_ef; const float wind_apparent_dir_ef = degrees(atan2f(wind_apparent_ef.y, wind_apparent_ef.x)); const float wind_apparent_speed = safe_sqrt(sq(wind_apparent_ef.x)+sq(wind_apparent_ef.y)); const float wind_apparent_dir_bf = wrap_180(wind_apparent_dir_ef - degrees(AP::ahrs().yaw)); // calculate angle-of-attack from wind to mainsail float aoa_deg = MAX(fabsf(wind_apparent_dir_bf) - mainsail_angle_bf, 0); // calculate Lift force (perpendicular to wind direction) and Drag force (parallel to wind direction) float lift_wf, drag_wf; calc_lift_and_drag(wind_apparent_speed, aoa_deg, lift_wf, drag_wf); // rotate lift and drag from wind frame into body frame const float sin_rot_rad = sinf(radians(wind_apparent_dir_bf)); const float cos_rot_rad = cosf(radians(wind_apparent_dir_bf)); const float force_fwd = fabsf(lift_wf * sin_rot_rad) - (drag_wf * cos_rot_rad); // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; // speed in m/s in body frame Vector3f velocity_body = dcm.transposed() * velocity_ef; // speed along x axis, +ve is forward float speed = velocity_body.x; // yaw rate in degrees/s float yaw_rate = get_yaw_rate(steering, speed); gyro = Vector3f(0,0,radians(yaw_rate)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // hull drag float hull_drag = sq(speed) * 0.5f; if (!is_positive(speed)) { hull_drag *= -1.0f; } // accel in body frame due acceleration from sail and deceleration from hull friction accel_body = Vector3f(force_fwd - hull_drag, 0, 0); accel_body /= mass; // add in accel due to direction change accel_body.y += radians(yaw_rate) * speed; // now in earth frame Vector3f accel_earth = dcm * accel_body; // we are on the ground, so our vertical accel is zero accel_earth.z = 0; // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector position += velocity_ef * delta_time; // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } } // namespace SITL