/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef HAL_DEBUG_BUILD
#define AP_INLINE_VECTOR_OPS
#pragma GCC optimize("O2")
#endif
#include "NotchFilter.h"
const static float NOTCH_MAX_SLEW = 0.05f;
const static float NOTCH_MAX_SLEW_LOWER = 1.0f - NOTCH_MAX_SLEW;
const static float NOTCH_MAX_SLEW_UPPER = 1.0f / NOTCH_MAX_SLEW_LOWER;
/*
calculate the attenuation and quality factors of the filter
*/
template
void NotchFilter::calculate_A_and_Q(float center_freq_hz, float bandwidth_hz, float attenuation_dB, float& A, float& Q) {
A = powf(10, -attenuation_dB / 40.0f);
if (center_freq_hz > 0.5 * bandwidth_hz) {
const float octaves = log2f(center_freq_hz / (center_freq_hz - bandwidth_hz / 2.0f)) * 2.0f;
Q = sqrtf(powf(2, octaves)) / (powf(2, octaves) - 1.0f);
} else {
Q = 0.0;
}
}
/*
initialise filter
*/
template
void NotchFilter::init(float sample_freq_hz, float center_freq_hz, float bandwidth_hz, float attenuation_dB)
{
// check center frequency is in the allowable range
if ((center_freq_hz > 0.5 * bandwidth_hz) && (center_freq_hz < 0.5 * sample_freq_hz)) {
float A, Q;
initialised = false; // force center frequency change
calculate_A_and_Q(center_freq_hz, bandwidth_hz, attenuation_dB, A, Q);
init_with_A_and_Q(sample_freq_hz, center_freq_hz, A, Q);
} else {
initialised = false;
}
}
template
void NotchFilter::init_with_A_and_Q(float sample_freq_hz, float center_freq_hz, float A, float Q)
{
// don't update if no updates required
if (initialised && is_equal(center_freq_hz, _center_freq_hz) && is_equal(sample_freq_hz, _sample_freq_hz)) {
return;
}
float new_center_freq = center_freq_hz;
// constrain the new center frequency by a percentage of the old frequency
if (initialised && !need_reset && !is_zero(_center_freq_hz)) {
new_center_freq = constrain_float(new_center_freq, _center_freq_hz * NOTCH_MAX_SLEW_LOWER,
_center_freq_hz * NOTCH_MAX_SLEW_UPPER);
}
if (is_positive(new_center_freq) && (new_center_freq < 0.5 * sample_freq_hz) && (Q > 0.0)) {
float omega = 2.0 * M_PI * new_center_freq / sample_freq_hz;
float alpha = sinf(omega) / (2 * Q);
b0 = 1.0 + alpha*sq(A);
b1 = -2.0 * cosf(omega);
b2 = 1.0 - alpha*sq(A);
a1 = b1;
a2 = 1.0 - alpha;
const float a0_inv = 1.0/(1.0 + alpha);
// Pre-multiply to save runtime calc
b0 *= a0_inv;
b1 *= a0_inv;
b2 *= a0_inv;
a1 *= a0_inv;
a2 *= a0_inv;
_center_freq_hz = new_center_freq;
_sample_freq_hz = sample_freq_hz;
initialised = true;
} else {
// leave center_freq_hz at last value
initialised = false;
}
}
/*
apply a new input sample, returning new output
*/
template
T NotchFilter::apply(const T &sample)
{
if (!initialised || need_reset) {
// if we have not been initialised when return the input
// sample as output and update delayed samples
signal1 = sample;
signal2 = sample;
ntchsig1 = sample;
ntchsig2 = sample;
need_reset = false;
return sample;
}
T output = sample*b0 + ntchsig1*b1 + ntchsig2*b2 - signal1*a1 - signal2*a2;
ntchsig2 = ntchsig1;
ntchsig1 = sample;
signal2 = signal1;
signal1 = output;
return output;
}
template
void NotchFilter::reset()
{
need_reset = true;
}
/*
instantiate template classes
*/
template class NotchFilter;
template class NotchFilter;
template class NotchFilter;