--[[ trajectory tracking aerobatic control See README.md for usage Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller assistance from Paul Riseborough, testing by Henry Wurzburg ]]-- -- setup param block for aerobatics, reserving 30 params beginning with AERO_ local PARAM_TABLE_KEY = 70 local PARAM_TABLE_PREFIX = 'AEROM_' assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table') -- add a parameter and bind it to a variable function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX .. name) end AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 6000) HGT_I = bind_add_param('HGT_I', 2, 2) AEROM_KE_ANG = bind_add_param('KE_ANG', 3, 15) THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80) SPD_P = bind_add_param('SPD_P', 5, 5) SPD_I = bind_add_param('SPD_I', 6, 25) ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3) ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25) AUTO_MIS = bind_add_param('AUTO_MIS', 9, 0) AUTO_RAD = bind_add_param('AUTO_RAD', 10, 40) TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0) ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0) ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8) AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60) AEROM_THR_LKAHD = bind_add_param('THR_LKAHD', 15, 1) AEROM_DEBUG = bind_add_param('DEBUG', 16, 0) -- cope with old param values if AEROM_ANG_ACCEL:get() < 100 then AEROM_ANG_ACCEL:set_and_save(3000) end ACRO_ROLL_RATE = Parameter("ACRO_ROLL_RATE") ARSPD_FBW_MIN = Parameter("ARSPD_FBW_MIN") SCALING_SPEED = Parameter("SCALING_SPEED") local GRAVITY_MSS = 9.80665 --[[ Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode --]] -- 2nd param table for tricks on a switch local PARAM_TABLE_KEY2 = 71 local PARAM_TABLE_PREFIX2 = "TRIK" assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2') -- add a parameter and bind it to a variable in table2 function bind_add_param2(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name)) return Parameter(PARAM_TABLE_PREFIX2 .. name) end local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0) local TRICKS = nil local TRIK_SEL_FN = nil local TRIK_ACT_FN = nil local TRIK_COUNT = nil local function TrickDef(id, arg1, arg2, arg3, arg4) local self = {} self.id = id self.args = {arg1, arg2, arg3, arg4} return self end -- constrain a value between limits function constrain(v, vmin, vmax) if v < vmin then v = vmin end if v > vmax then v = vmax end return v end if TRIK_ENABLE:get() > 0 then TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301) TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300) TRIK_COUNT = bind_add_param2("_COUNT", 4, 3) TRICKS = {} -- setup parameters for tricks local count = math.floor(constrain(TRIK_COUNT:get(),1,11)) for i = 1, count do local k = 5*i local prefix = string.format("%u", i) TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i), bind_add_param2(prefix .. "_ARG1", k+1, 30), bind_add_param2(prefix .. "_ARG2", k+2, 0), bind_add_param2(prefix .. "_ARG3", k+3, 0), bind_add_param2(prefix .. "_ARG4", k+4, 0)) end gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get())) end local NAV_TAKEOFF = 22 local NAV_WAYPOINT = 16 local NAV_SCRIPT_TIME = 42702 local MODE_AUTO = 10 local LOOP_RATE = 50 local DO_JUMP = 177 local k_throttle = 70 local NAME_FLOAT_RATE = 2 local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM") local last_id = 0 local current_task = nil local last_named_float_t = 0 local path_var = {} function wrap_360(angle) local res = math.fmod(angle, 360.0) if res < 0 then res = res + 360.0 end return res end function wrap_180(angle) local res = wrap_360(angle) if res > 180 then res = res - 360 end return res end function wrap_pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_180(angle_deg) return math.rad(angle_wrapped) end function wrap_2pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_360(angle_deg) return math.rad(angle_wrapped) end -- a PI controller implemented as a Lua object local function PI_controller(kP,kI,iMax) -- the new instance. You can put public variables inside this self -- declaration if you want to local self = {} -- private fields as locals local _kP = kP or 0.0 local _kI = kI or 0.0 local _kD = kD or 0.0 local _iMax = iMax local _last_t = nil local _I = 0 local _P = 0 local _total = 0 local _counter = 0 local _target = 0 local _current = 0 -- update the controller. function self.update(target, current) local now = millis():tofloat() * 0.001 if not _last_t then _last_t = now end local dt = now - _last_t _last_t = now local err = target - current _counter = _counter + 1 local P = _kP * err _I = _I + _kI * err * dt if _iMax then _I = constrain(_I, -_iMax, iMax) end local I = _I local ret = P + I _target = target _current = current _P = P _total = ret return ret end -- reset integrator to an initial value function self.reset(integrator) _I = integrator end function self.set_I(I) _kI = I end function self.set_P(P) _kP = P end function self.set_Imax(Imax) _iMax = Imax end -- log the controller internals function self.log(name, add_total) -- allow for an external addition to total logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total) end -- return the instance return self end local function speed_controller(kP_param,kI_param, kFF_pitch_param, Imax) local self = {} local kFF_pitch = kFF_pitch_param local PI = PI_controller(kP_param:get(), kI_param:get(), Imax) function self.update(target, anticipated_pitch_rad) local current_speed = ahrs:get_velocity_NED():length() local throttle = PI.update(target, current_speed) local FF = math.sin(anticipated_pitch_rad)*kFF_pitch:get() PI.log("AESP", FF) return throttle + FF end function self.reset() PI.reset(0) local temp_throttle = self.update(ahrs:get_velocity_NED():length(), 0) local current_throttle = SRV_Channels:get_output_scaled(k_throttle) PI.reset(current_throttle-temp_throttle) end return self end local speed_PI = speed_controller(SPD_P, SPD_I, THR_PIT_FF, 100.0) function sgn(x) local eps = 0.000001 if (x > eps) then return 1.0 elseif x < eps then return -1.0 else return 0.0 end end function get_wp_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end function resolve_jump(i) local m = mission:get_item(i) while m:command() == DO_JUMP do i = math.floor(m:param1()) m = mission:get_item(i) end return i end --[[ Wrapper to construct a Vector3f{x, y, z} from (x, y, z) --]] function makeVector3f(x, y, z) local vec = Vector3f() vec:x(x) vec:y(y) vec:z(z) return vec end --[[ get quaternion rotation between vector1 and vector2 with thanks to https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another --]] function vectors_to_quat_rotation(vector1, vector2) local v1 = vector1:copy() local v2 = vector2:copy() v1:normalize() v2:normalize() local dot = v1:dot(v2) local a = v1:cross(v2) local w = 1.0 + dot local q = Quaternion() q:q1(w) q:q2(a:x()) q:q3(a:y()) q:q4(a:z()) q:normalize() return q end --[[ trajectory building blocks. We have two types of building blocks, roll blocks and path blocks. These are combined to give composite paths --]] --[[ all roll components inherit from RollComponent --]] function RollComponent() local self = {} self.name = nil function self.get_roll(t) return 0 end return self end --[[ roll component that goes through a fixed total angle at a fixed roll rate --]] function roll_angle(_angle) local self = RollComponent() self.name = "roll_angle" local angle = _angle function self.get_roll(t) return angle * t end return self end --[[ roll component that banks to _angle over AEROM_ENTRY_RATE degrees/s, then holds that angle, then banks back to zero at AEROM_ENTRY_RATE degrees/s --]] function roll_angle_entry_exit(_angle) local self = RollComponent() self.name = "roll_angle_entry_exit" local angle = _angle local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get() function self.get_roll(t, time_s) local entry_t = entry_s / time_s if entry_t > 0.5 then entry_t = 0.5 end if t <= 0 then return 0 end if t < entry_t then return angle * t / entry_t end if t < 1.0 - entry_t then return angle end if angle == 0 or t >= 1.0 then return 0 end return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * angle end return self end --[[ roll component that banks to _angle over AEROM_ENTRY_RATE degrees/s, then holds that angle --]] function roll_angle_entry(_angle) local self = RollComponent() self.name = "roll_angle_entry" local angle = _angle local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get() function self.get_roll(t, time_s) local entry_t = entry_s / time_s if entry_t > 0.5 then entry_t = 0.5 end if t < entry_t then return angle * t / entry_t end return angle end return self end --[[ roll component that holds angle until the end of the subpath, then rolls back to 0 at the AEROM_ENTRY_RATE --]] function roll_angle_exit(_angle) local self = {} self.name = "roll_angle_exit" local angle = _angle local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get() function self.get_roll(t, time_s) local entry_t = entry_s / time_s if t < 1.0 - entry_t then return 0 end if angle == 0 then return 0 end return ((t - (1.0 - entry_t)) / entry_t) * angle end return self end --[[ all path components inherit from PathComponent --]] function PathComponent() local self = {} self.name = nil function self.get_pos(t) return makeVector3f(0, 0, 0) end function self.get_length() return 0 end function self.get_final_orientation() return Quaternion() end function self.get_roll_correction(t) return 0 end return self end --[[ path component that does a straight horizontal line --]] function path_straight(_distance) local self = PathComponent() self.name = "path_straight" local distance = _distance function self.get_pos(t) return makeVector3f(distance*t, 0, 0) end function self.get_length() return distance end return self end --[[ path component that does a vertical arc over a given angle --]] function path_vertical_arc(_radius, _angle) local self = PathComponent() self.name = "path_vertical_arc" local radius = _radius local angle = _angle function self.get_pos(t) local t2ang = wrap_2pi(t * math.rad(angle)) return makeVector3f(math.abs(radius)*math.sin(t2ang), 0, -radius*(1.0 - math.cos(t2ang))) end function self.get_length() return math.abs(radius) * 2 * math.pi * math.abs(angle) / 360.0 end function self.get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,1,0), sgn(radius)*math.rad(wrap_180(angle))) q:normalize() return q end return self end --[[ integrate a function, assuming fn takes a time t from 0 to 1 --]] function integrate_length(fn) local total = 0.0 local p = fn(0) for i = 1, 100 do local t = i*0.01 local p2 = fn(t) local dv = p2 - p total = total + dv:length() p = p2 end return total end --[[ path component that does a horizontal arc over a given angle --]] function path_horizontal_arc(_radius, _angle, _height_gain) local self = PathComponent() self.name = "path_horizontal_arc" local radius = _radius local angle = _angle local height_gain = _height_gain if height_gain == nil then height_gain = 0 end function self.get_pos(t) local t2ang = t * math.rad(angle) return makeVector3f(math.abs(radius)*math.sin(t2ang), radius*(1.0 - math.cos(t2ang)), -height_gain*t) end function self.get_length() local circumference = 2 * math.pi * math.abs(radius) local full_circle_height_gain = height_gain * 360.0 / math.abs(angle) local helix_length = math.sqrt(full_circle_height_gain*full_circle_height_gain + circumference*circumference) return helix_length * math.abs(angle) / 360.0 end function self.get_final_orientation() local q = Quaternion() q:from_axis_angle(makeVector3f(0,0,1), sgn(radius)*math.rad(angle)) --[[ we also need to apply the roll correction to the final orientation --]] local rc = self.get_roll_correction(1.0) if rc ~= 0 then local q2 = Quaternion() q2:from_axis_angle(makeVector3f(1,0,0), math.rad(-rc)) q = q * q2 q:normalize() end return q end --[[ roll correction for the rotation caused by height gain --]] function self.get_roll_correction(t) if height_gain == 0 then return 0 end local gamma=math.atan(height_gain*(angle/360)/(2*math.pi*radius)) return -t*360*math.sin(gamma) end return self end --[[ a Path has the methods of both RollComponent and PathComponent allowing for a complete description of a subpath --]] function Path(_path_component, _roll_component) local self = {} self.name = string.format("%s|%s", _path_component.name, _roll_component.name) local path_component = _path_component local roll_component = _roll_component function self.get_roll(t, time_s) return wrap_180(roll_component.get_roll(t, time_s) + path_component.get_roll_correction(t)) end function self.get_pos(t) return path_component.get_pos(t) end function self.get_speed(t) return nil end function self.get_length() return path_component.get_length() end function self.get_final_orientation() return path_component.get_final_orientation() end return self end --[[ componse multiple sub-paths together to create a full trajectory --]] function path_composer(_name, _subpaths) local self = {} self.name = _name local subpaths = _subpaths local lengths = {} local proportions = {} local start_time = {} local end_time = {} local start_orientation = {} local start_pos = {} local start_angle = {} local end_speed = {} local start_speed = {} local total_length = 0 local num_sub_paths = #subpaths local last_subpath_t = { -1, 0, 0 } local orientation = Quaternion() local pos = makeVector3f(0,0,0) local angle = 0 local speed = target_groundspeed() local highest_i = 0 local cache_i = -1 local cache_sp = nil local message = nil -- return the subpath with index i. Used to cope with two ways of calling path_composer function self.subpath(i) if i == cache_i then return cache_sp end cache_i = i local sp = subpaths[i] if sp.name then -- we are being called with a list of Path objects cache_sp = sp message = nil else -- we are being called with a list function/argument tuples local args = subpaths[i][2] cache_sp = subpaths[i][1](args[1], args[2], args[3], args[4], start_pos[i], start_orientation[i]) message = subpaths[i].message end return cache_sp end for i = 1, num_sub_paths do -- accumulate orientation, position and angle start_orientation[i] = orientation start_pos[i] = pos start_angle[i] = angle local sp = self.subpath(i) lengths[i] = sp.get_length() total_length = total_length + lengths[i] local spos = sp.get_pos(1.0) orientation:earth_to_body(spos) pos = pos + spos orientation = orientation * sp.get_final_orientation() orientation:normalize() angle = angle + sp.get_roll(1.0, lengths[i]/speed) start_speed[i] = speed end_speed[i] = sp.get_speed(1.0) if end_speed[i] == nil then end_speed[i] = target_groundspeed() end speed = end_speed[i] if sp.roll_ref ~= nil then q = Quaternion() q:from_axis_angle(makeVector3f(1,0,0), math.rad(sp.roll_ref)) orientation = orientation * q orientation:normalize() end end -- get our final orientation, including roll local final_orientation = orientation local q = Quaternion() q:from_axis_angle(makeVector3f(1,0,0), math.rad(wrap_180(angle))) final_orientation = q * final_orientation -- work out the proportion of the total time we will spend in each sub path local total_time = 0 for i = 1, num_sub_paths do proportions[i] = lengths[i] / total_length start_time[i] = total_time end_time[i] = total_time + proportions[i] total_time = total_time + proportions[i] end function self.get_subpath_t(t) if last_subpath_t[1] == t then -- use cached value return last_subpath_t[2], last_subpath_t[3] end local i = 1 while t >= end_time[i] and i < num_sub_paths do i = i + 1 end local subpath_t = (t - start_time[i]) / proportions[i] last_subpath_t = { t, subpath_t, i } local sp = self.subpath(i) if i > highest_i and t < 1.0 and t > 0 then highest_i = i if message ~= nil then gcs:send_text(0, message) end if AEROM_DEBUG:get() > 0 then gcs:send_text(0, string.format("starting %s[%d] %s", self.name, i, sp.name)) end end return subpath_t, i end -- return position at time t function self.get_pos(t) local subpath_t, i = self.get_subpath_t(t) local sp = self.subpath(i) pos = sp.get_pos(subpath_t) start_orientation[i]:earth_to_body(pos) return pos + start_pos[i] end -- return angle for the composed path at time t function self.get_roll(t, time_s) local subpath_t, i = self.get_subpath_t(t) local speed = self.get_speed(t) if speed == nil then speed = target_groundspeed() end local sp = self.subpath(i) angle = sp.get_roll(subpath_t, lengths[i]/speed) return angle + start_angle[i] end -- return speed for the composed path at time t function self.get_speed(t) local subpath_t, i = self.get_subpath_t(t) return start_speed[i] + subpath_t * (end_speed[i] - start_speed[i]) end function self.get_length() return total_length end function self.get_final_orientation() return final_orientation end return self end --[[ make a list of Path() objects from a list of PathComponent, RollComponent pairs --]] function make_paths(name, paths) local p = {} for i = 1, #paths do p[i] = Path(paths[i][1], paths[i][2]) if paths[i].roll_ref then p[i].roll_ref = paths[i].roll_ref end end return path_composer(name, p) end --[[ composed trajectories, does as individual aerobatic maneuvers --]] function climbing_circle(radius, height, bank_angle, arg4) return make_paths("climbing_circle", { { path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) }, }) end function half_climbing_circle(radius, height, bank_angle, arg4) return make_paths("half_climbing_circle", { { path_horizontal_arc(radius, 180, height), roll_angle_entry_exit(bank_angle) }, }) end function loop(radius, bank_angle, num_loops, arg4) if not num_loops or num_loops <= 0 then num_loops = 1 end return make_paths("loop", { { path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) }, }) end function straight_roll(length, num_rolls, arg3, arg4) return make_paths("straight_roll", { { path_straight(length), roll_angle(num_rolls*360) }, }) end --[[ fly straight until we are distance meters from the composite path origin in the maneuver frame along the X axis. If we are already past that position then return immediately --]] function straight_align(distance, arg2, arg3, arg4, start_pos, start_orientation) local d2 = distance - start_pos:x() local v = makeVector3f(d2, 0, 0) start_orientation:earth_to_body(v) local len = math.max(v:x(),0.01) return make_paths("straight_align", { { path_straight(len), roll_angle(0) }, }) end function immelmann_turn(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("immelmann_turn", { { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight(rabs/2), roll_angle(180) }, }) end -- immelmann with max roll rate function immelmann_turn_fast(r, arg2, arg3, arg4) local rabs = math.abs(r) local roll_time = 180.0 / ACRO_ROLL_RATE:get() local roll_dist = target_groundspeed() * roll_time return make_paths("immelmann_turn_fast", { { path_vertical_arc(r, 180), roll_angle(0) }, { path_straight(roll_dist), roll_angle(180) }, }) end function humpty_bump(r, h, arg3, arg4) assert(h >= 2*r) local rabs = math.abs(r) return make_paths("humpty_bump", { { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(180) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight(h-2*rabs), roll_angle(0) }, { path_vertical_arc(-r, 90), roll_angle(0) }, { path_straight(2*rabs), roll_angle(0) }, }) end function crossbox_humpty(r, h, arg3, arg4) assert(h >= 2*r) local rabs = math.abs(r) return make_paths("crossbox_humpty", { { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=-90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 90), roll_angle(0) }, }) end function laydown_humpty(r, h, arg3, arg4) assert(h >= 2*r) local rabs = math.abs(r) return make_paths("laydown_humpty", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=-90 }, { path_straight((h-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end function split_s(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("split_s", { { path_straight(rabs/2), roll_angle(180) }, { path_vertical_arc(-r, 180), roll_angle(0) }, }) end function upline_45(r, height_gain, arg3, arg4) --local h = (height_gain - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45)) local h = (height_gain - (2 * r) + (2 * r * math.cos(math.rad(45)))) / math.cos(math.rad(45)) assert(h >= 0) return make_paths("upline_45", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end function upline_20(r, height_gain, arg3, arg4) local h = (height_gain - 2*r*(1.0-math.cos(math.rad(20))))/math.sin(math.rad(20)) assert(h >= 0) return make_paths("upline_45", { { path_vertical_arc(r, 20), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(-r, 20), roll_angle(0) }, }) end function downline_45(r, height_loss, arg3, arg4) local h = (height_loss - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45)) assert(h >= 0) return make_paths("downline_45", { { path_vertical_arc(-r, 45), roll_angle(0) }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end function rolling_circle(radius, num_rolls, arg3, arg4) return make_paths("rolling_circle", { { path_horizontal_arc(radius, 360), roll_angle(360*num_rolls) }, }) end function straight_flight(length, bank_angle, arg3, arg4) return make_paths("straight_flight", { { path_straight(length), roll_angle_entry_exit(bank_angle) }, }) end function scale_figure_eight(r, bank_angle, arg3, arg4) local rabs = math.abs(r) return make_paths("scale_figure_eight", { { path_straight(rabs), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) }, { path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) }, { path_straight(3*rabs), roll_angle(0) }, }) end function figure_eight(r, bank_angle, arg3, arg4) local rabs = math.abs(r) return make_paths("figure_eight", { { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) }, { path_straight(2*rabs), roll_angle(0) }, { path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) }, }) end --[[ stall turn is not really correct, as we don't fully stall. Needs to be reworked --]] function stall_turn(radius, height, direction, min_speed) local h = height - radius assert(h >= 0) return make_paths("stall_turn", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight(h), roll_angle(0), min_speed }, { path_horizontal_arc(5*direction, 180), roll_angle(0), min_speed }, { path_straight(h), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(0) }, }) end function half_cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("half_cuban_eight", { { path_straight(2*rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end function cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("cuban_eight", { { path_straight(rabs*math.sqrt(2)), roll_angle(0) }, { path_vertical_arc(r, 225), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 270), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(r, 45), roll_angle(0) }, }) end function half_reverse_cuban_eight(r, arg2, arg3, arg4) local rabs = math.abs(r) return make_paths("half_reverse_cuban_eight", { { path_vertical_arc(r, 45), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_straight(2*rabs/3), roll_angle(180) }, { path_straight(2*rabs/3), roll_angle(0) }, { path_vertical_arc(-r, 225), roll_angle(0) }, }) end function horizontal_rectangle(total_length, total_width, r, bank_angle) local l = total_length - 2*r local w = total_width - 2*r return make_paths("horizontal_rectangle", { { path_straight(0.5*l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)}, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(l), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(w), roll_angle(0) }, { path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(0.5*l), roll_angle(0) }, }) end function vertical_aerobatic_box(total_length, total_width, r, bank_angle) local l = total_length - 2*r local w = total_width - 2*r return make_paths("vertical_aerobatic_box", { { path_straight(0.5*l), roll_angle_entry(bank_angle) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(w), roll_angle(0) }, { path_vertical_arc(r, 90), roll_angle(0) }, { path_straight(0.5*l), roll_angle_exit(-bank_angle) }, }) end function two_point_roll(length, arg2, arg3, arg4) return make_paths("two_point_roll", { { path_straight((length*3)/7), roll_angle(180) }, { path_straight(length/7), roll_angle(0) }, { path_straight((length*3)/7), roll_angle(180) }, }) end function procedure_turn(radius, bank_angle, step_out, arg4) local rabs = math.abs(radius) return make_paths("procedure_turn", { { path_straight(rabs), roll_angle(0) }, { path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) }, { path_straight(step_out), roll_angle(0) }, { path_horizontal_arc(-radius, 270), roll_angle_entry_exit(-bank_angle) }, { path_straight(4*rabs), roll_angle(0) }, }) end function derry_turn(radius, bank_angle, arg3, arg4) return make_paths("derry_turn", { { path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) }, { path_horizontal_arc(-radius, 90), roll_angle_entry_exit(-bank_angle) }, }) end function p23_1(radius, height, width, arg4) -- top hat return make_paths("p23_1", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(90) }, { path_straight((height-2*radius)/9), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(90) }, { path_straight((height-2*radius)*2/9), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((width-2*radius)/3), roll_angle(0) }, { path_straight((width-2*radius)/3), roll_angle(180) }, { path_straight((width-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(90) }, { path_straight((height-2*radius)/9), roll_angle(0) }, { path_straight((height-2*radius)*2/9), roll_angle(90) }, { path_straight((height-2*radius)*2/9), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(0) }, }) end function p23_2(radius, height, arg3, arg4) -- half square return make_paths("p23_2", { { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(180) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_3(radius, height, arg3, arg4) -- humpty return make_paths("p23_3", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/8), roll_angle(0) }, { path_straight((height-2*radius)*6/8), roll_angle(360) }, { path_straight((height-2*radius)/8), roll_angle(0) }, { path_vertical_arc(radius, 180), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(180) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(0) }, }) end function p23_4(radius, height, arg3, arg4) -- on corner local l = ((height - (2 * radius)) * math.sin(math.rad(45))) return make_paths("p23_4", { { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(l/3), roll_angle(0) }, { path_straight(l/3), roll_angle(180) }, { path_straight(l/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight(l/3), roll_angle(0) }, { path_straight(l/3), roll_angle(180) }, { path_straight(l/3), roll_angle(0) }, { path_vertical_arc(-radius, 45), roll_angle(0) }, }) end function p23_5(radius, height_gain, arg3, arg4) -- 45 up - should be 1 1/2 snaps.... --local l = (height_gain - 2*radius*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45)) local l = (height_gain - (2 * radius) + (2 * radius * math.cos(math.rad(45)))) / math.cos(math.rad(45)) return make_paths("p23_5", { { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(l/3), roll_angle(0) }, { path_straight(l/3), roll_angle(540) }, { path_straight(l/3), roll_angle(0) }, { path_vertical_arc(radius, 45), roll_angle(0) }, }) end function p23_6(radius, height_gain, arg3, arg4) -- 3 sided local l = (height_gain - 2*radius) / ((2*math.sin(math.rad(45))) + 1) return make_paths("p23_6", { { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(l), roll_angle(0) }, { path_vertical_arc(-radius, 45), roll_angle(0) }, }) end function p23_7(length, arg2, arg3, arg4) -- roll combination return make_paths("p23_7", { { path_straight(length*5/22), roll_angle(180) }, { path_straight(length*1/22), roll_angle(0) }, { path_straight(length*5/22), roll_angle(180) }, { path_straight(length*5/22), roll_angle(-180) }, { path_straight(length*1/22), roll_angle(0) }, { path_straight(length*5/22), roll_angle(-180) }, }) end function p23_8(radius, height, arg3, arg4) -- immelmann return make_paths("p23_8", { { path_vertical_arc(-radius, 180), roll_angle(0) }, { path_straight(radius/2), roll_angle(180) }, }) end function p23_9(radius, height, num_turns, arg4) -- spin (currently a vert down 1/2 roll) return make_paths("p23_9", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight(height-2*radius), roll_angle(180) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_10(radius, height, arg3, arg4) -- humpty return make_paths("p23_10", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(180) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 180), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(180) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_11(radius, height, arg3, arg4) -- laydown loop local rabs = math.abs(radius) local vert_length = height - (2 * rabs) local angle_length = ((2 * rabs) - (2 * (rabs - (rabs * (math.cos(math.rad(45))))))) / math.sin(math.rad(45)) return make_paths("p23_11", { { path_vertical_arc(-radius, 45), roll_angle(0) }, { path_straight(angle_length*2/6), roll_angle(0) }, { path_straight(angle_length*1/6), roll_angle(180) }, { path_straight(angle_length*1/6), roll_angle(-180) }, { path_straight(angle_length*2/6), roll_angle(0) }, { path_vertical_arc(radius, 315), roll_angle(0) }, { path_straight(vert_length*2/9), roll_angle(0) }, { path_straight(vert_length*2/9), roll_angle(90) }, { path_straight(vert_length*1/9), roll_angle(0) }, { path_straight(vert_length*2/9), roll_angle(90) }, { path_straight(vert_length*2/9), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(0) }, }) end function p23_12(radius, height, arg3, arg4) -- 1/2 square return make_paths("p23_12", { { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(180) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_13(radius, height, arg3, arg4) -- stall turn return make_paths("p23_13", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(90) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_straight((height-2*radius)/3), roll_angle(90) }, { path_straight((height-2*radius)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_13a(radius, height, arg3, arg4) -- stall turn PLACE HOLDER assert(height >= 2*radius) local rabs = math.abs(radius) return make_paths("P23_13a", { { path_vertical_arc(radius, 90), roll_angle(0) }, { path_straight((height-2*rabs)/3), roll_angle(0) }, { path_straight((height-2*rabs)/3), roll_angle(90), roll_ref=90 }, { path_straight((height-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-radius, 180), roll_angle(0) }, { path_straight((height-2*rabs)/3), roll_angle(0) }, { path_straight((height-2*rabs)/3), roll_angle(-90), roll_ref=-90 }, { path_straight((height-2*rabs)/3), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, }) end function p23_14(r, h, arg3, arg4) -- fighter turn assert(h >= 2*r) local rabs = math.abs(r) local angle_length = (h - ((0.2929 * rabs)) / (math.sin(math.rad(45)))) - rabs return make_paths("laydown_humpty", { { path_vertical_arc(-r, 45), roll_angle(0) }, { path_straight((angle_length)/3), roll_angle(0) }, { path_straight((angle_length)/3), roll_angle(90), roll_ref=90 }, { path_straight((angle_length)/3), roll_angle(0) }, { path_vertical_arc(-r, 180), roll_angle(0) }, { path_straight((angle_length)/3), roll_angle(0) }, { path_straight((angle_length)/3), roll_angle(-90), roll_ref=-90 }, { path_straight((angle_length)/3), roll_angle(0) }, { path_vertical_arc(-r, 45), roll_angle(0) }, }) end function p23_15(radius, height, arg3, arg4) -- triangle local h1 = radius * math.sin(math.rad(45)) local h2 = (2 * radius) - (radius * math.cos(math.rad(45))) local h3 = height - (2 * radius) local side = h3 / math.cos(math.rad(45)) --local base = (h3 + (2 * (radius - radius * math.cos(math.rad(45))))) - (2 * radius) local base = (2 * (h3 + radius)) - 2 * radius return make_paths("p23_15", { { path_straight(base * 1/5), roll_angle(180) }, { path_straight(base * 2/5), roll_angle(0) }, { path_vertical_arc(-radius, 135), roll_angle(0) }, { path_straight(side*2/9), roll_angle(0) }, { path_straight(side*2/9), roll_angle(90) }, { path_straight(side*1/9), roll_angle(0) }, { path_straight(side*2/9), roll_angle(90) }, { path_straight(side*2/9), roll_angle(0) }, { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight(side*2/9), roll_angle(0) }, { path_straight(side*2/9), roll_angle(90) }, { path_straight(side*1/9), roll_angle(0) }, { path_straight(side*2/9), roll_angle(90) }, { path_straight(side*2/9), roll_angle(0) }, { path_vertical_arc(-radius, 135), roll_angle(0) }, { path_straight(base * 2/5), roll_angle(0) }, { path_straight(base * 1/5), roll_angle(180) }, { path_straight(base * 2/5), roll_angle(0) }, }) end function p23_16(radius, height, arg3, arg4) -- sharks tooth local angle_length = (height - 2 * (radius - (radius * math.cos(math.rad(45))))) / math.cos(math.rad(45)) local vert_length = height - (2 * radius) return make_paths("p23_16", { { path_vertical_arc(-radius, 90), roll_angle(0) }, { path_straight((vert_length)/3), roll_angle(0) }, { path_straight((vert_length)/3), roll_angle(180) }, { path_straight((vert_length)/3), roll_angle(0) }, { path_vertical_arc(-radius, 135), roll_angle(0) }, { path_straight(angle_length*2/9), roll_angle(0) }, { path_straight(angle_length*2/9), roll_angle(90) }, { path_straight(angle_length*1/9), roll_angle(0) }, { path_straight(angle_length*2/9), roll_angle(90) }, { path_straight(angle_length*2/9), roll_angle(0) }, { path_vertical_arc(radius, 45), roll_angle(0) }, }) end function p23_17(radius, arg2, arg3, arg4) -- loop return make_paths("p23_17", { { path_vertical_arc(radius, 135), roll_angle(0) }, { path_vertical_arc(radius, 90), roll_angle(180) }, { path_vertical_arc(radius, 135), roll_angle(0) }, }) end function half_roll(arg1, arg2, arg3, arg4) -- half roll for testing inverted manouvers return make_paths("half_roll", { { path_straight(40), roll_angle(180) }, { path_straight(10), roll_angle(0) }, }) end function fai_f3a_box_l_r() return path_composer("f3a_box_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length. -- Script start point is ON CENTER, with the model heading DOWNWIND! { straight_roll, { 150, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { 0, 0 } }, { vertical_aerobatic_box, { 540, 230, 30, 0 }, message="Starting Box Demo"}, { vertical_aerobatic_box, { 540, 230, 30, 0 } }, { vertical_aerobatic_box, { 540, 230, 30, 0 } }, { vertical_aerobatic_box, { 540, 230, 30, 0 } }, { straight_roll, { 50, 0 } } }) end --[[ NZ clubman schedule --]] function nz_clubman() -- positioned for a flight line 100m out -- Script start point is ON CENTER, with the model heading DOWNWIND! return path_composer("nz_clubman_l_r", { --[[ { straight_roll, { 20, 0 } }, { procedure_turn, { 20, 45, 60 } }, { straight_roll, { 150, 0 } }, { half_reverse_cuban_eight, { 40 } }, { straight_roll, { 150, 0 } }, --]] { straight_roll, { 150, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { 0, 0 } }, { cuban_eight, { 60 }, message="Cuban Eight"}, { straight_align, { -100, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { 40, 0 } }, { half_reverse_cuban_eight, { 60 }, message="Half Rev Cuban"}, { straight_align, { -150, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { -90, 0 } }, { two_point_roll, { 180 }, message="Two Point Roll"}, { straight_align, { 150, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { 72, 0 } }, { upline_45, { 30, 120 }, message="45 Upline"}, { straight_align, { -180, 0 } }, -- missing the stall turn { split_s, { 60, 90 } }, { straight_align, { -90, 0 } }, { straight_roll, { 180, 1 }, message="Slow Roll"}, { straight_align, { 150, 0 } }, { half_cuban_eight, { 60 } }, { straight_align, { 0, 0 } }, { loop, { 60, 0, 2 }, message="Two Loops"}, { straight_align, { -180, 0 } }, { immelmann_turn, { 60, 90 } }, { straight_align, { -72, 0 } }, { downline_45, { 30, 120 }, message="45 Downline"}, { straight_align, { 150, 0 } }, { half_cuban_eight, { 60 } }, { straight_roll, { 100, 0 } }, }) end --[[ F3A p23, preliminary schedule 2023 --]] function f3a_p23_l_r() return path_composer("f3a_p23_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length. -- Script start point is ON CENTER, with the model heading DOWNWIND! { straight_roll, { 80, 0 } }, { half_reverse_cuban_eight, { 60 } }, { straight_align, { 130, 0 } }, { p23_1, { 30, 200, 200 }, message="Top Hat"}, { straight_align, { -230, 0 } }, { p23_2, { 30, 200 }, message="Half Square Loop"}, { straight_align, { 0, 0 } }, { p23_3, { 30, 200 }, message="Humpty"}, { straight_align, { 160, 0 } }, { p23_4, { 30, 200 }, message="Half Square on Corner"}, { straight_align, { 110, 0 } }, { p23_5, { 30, 200 }, message="45 Up"}, -- snap roll { straight_align, { -191, 0 } }, { p23_6, { 30, 200 }, message="Half Eight Sided Loop"}, { straight_align, { -100, 0 } }, { p23_7, { 200 }, message="Roll Combination"}, { straight_align, { 160, 0 } }, { p23_8, { 100 }, message="Immelmann Turn"}, { straight_align, { 30, 0 } }, { p23_9, { 30, 200 }, message="Should be a Spin"}, -- spin { straight_align, { -170, 0 } }, { p23_10, { 30, 200 }, message="Humpty"}, { straight_align, { -91, 0 } }, { p23_11, { 50, 200 }, message="Laydown Loop"}, { straight_align, { 230, 0 } }, { p23_12, { 30, 200 }, message="Half Square Loop"}, { straight_align, { 30, 0 } }, { p23_13a, { 30, 200 }, message="Stall Turn"}, -- stall turn { straight_roll, { 100, 0 } }, { p23_14, { 30, 180 }, message="Fighter Turn"}, { straight_align, { -28, 0 } }, { p23_15, { 30, 200 }, message="Triangle"}, { straight_align, { 230, 0 } }, { p23_16, { 30, 160 }, message="Sharks Tooth"}, { straight_align, { 0, 0 } }, { p23_17, { 100 }, message="Loop"}, { straight_roll, { 100, 0 } }, }) end --[[ F4C Scale Schedule Example --]] function f4c_example_l_r() -- positioned for a flight line nominally 150m out (some manouvers start 30m out) -- Script start point is ON CENTER @ 150m, with the model heading DOWNWIND ie flying Right to Left! return path_composer("f4c_example", { { straight_roll, { 180, 0 } }, { half_climbing_circle, { -60, 0, -60 } }, -- come in close for the first two manouvers { straight_roll, { 20, 0 } }, { scale_figure_eight, { -80, -30 }, message="Scale Figure Eight"}, { straight_roll, { 80, 0 } }, { immelmann_turn, { 50 } }, { straight_align, { 0, 0 } }, --{ straight_roll, { 340, 0 } }, { climbing_circle, { 80, -125, 30 }, message="Descending 360"}, { straight_roll, { 40, 0 } }, { upline_20, { 80, 25 } }, -- Climb up 25m to base height { straight_roll, { 20, 0 } }, { half_climbing_circle, { 60, 0, 60 } }, -- Go back out to 150m { straight_align, { 0, 0 } }, { loop, { 50, 0, 1 }, message="Loop"}, { straight_align, { -50, 0 } }, { half_reverse_cuban_eight, { 50 } }, { straight_align, { 0, 0 } }, { immelmann_turn, { 50 }, message="Immelmann Turn"}, { straight_align, { -140, 0 } }, { split_s, { 50 } }, { straight_align, { 0, 0 } }, { half_cuban_eight, { 50 }, message="Half Cuban Eight"}, { straight_align, { -180, 0 } }, { half_climbing_circle, { 65, 0, 60 } }, { straight_roll, { 115, 0 } }, { derry_turn, { 65, 60 }, message="Derry Turn"}, { straight_roll, { 200, 0 } }, { half_climbing_circle, { -65, 0, -60 } }, { straight_align, { 0, 0 } }, { climbing_circle, { -80, 0, -30 }, message="Gear Demo"}, { straight_roll, { 200, 0 } }, { half_climbing_circle, { -65, 0, -60 } }, { straight_align, { 200, 0 } }, --{ barrell_roll, { 100, 200 } , message="Barrel Roll"}, -- barrel roll - (radius, length) { straight_roll, { 20, 0 } }, }) end --[[ simple air show --]] function air_show1() return path_composer("AirShow", { { loop, { 25, 0, 1 }, message="Loop"}, { straight_align, { 80, 0 } }, { half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" }, { straight_align, { 80 } }, { scale_figure_eight, { -40, -30 }, message="ScaleFigureEight" }, { immelmann_turn, { 30 }, message="Immelmann" }, { straight_align, { -40, 0 } }, { straight_roll, { 80, 2 }, message="Roll" }, { straight_align, { 120, 0 } }, { split_s, { 30 }, message="Split-S"}, { straight_align, { 0 } }, { rolling_circle, { -50, 3}, message="RollingCircle" }, { straight_align, { -50, 0 } }, { humpty_bump, { 20, 60 }, message="HumptyBump" }, { straight_align, { 80, 0 } }, { half_cuban_eight, { 25 }, message="HalfCubanEight" }, { straight_align, { 75, 0 } }, { upline_45, { 30, 50 }, message="Upline45", }, { downline_45, { 30, 50 }, message="Downline45" }, { half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" }, { straight_align, { 0 } }, }) end function air_show3() return path_composer("AirShow3", { { air_show1, {}, message="AirShowPt1" }, { air_show1, {}, message="AirShowPt2" }, { air_show1, {}, message="AirShowPt3" }, }) end function test_all_paths() return path_composer("test_all_paths", { { figure_eight, { 100, 45 } }, { straight_roll, { 20, 0 } }, { loop, { 30, 0, 1 } }, { straight_roll, { 20, 0 } }, { horizontal_rectangle, { 100, 100, 20, 45 } }, { straight_roll, { 20, 0 } }, { climbing_circle, { 100, 20, 45 } }, { straight_roll, { 20, 0 } }, { vertical_aerobatic_box, { 100, 100, 20, 0 } }, { straight_roll, { 20, 0 } }, { rolling_circle, { 100, 2, 0, 0 } }, { straight_roll, { 20, 0 } }, { half_cuban_eight, { 30, } }, { straight_roll, { 20, 0 } }, { half_reverse_cuban_eight, { 30, } }, { straight_roll, { 20, 0 } }, { cuban_eight, { 30, } }, { straight_roll, { 20, 0 } }, { humpty_bump, { 30, 100 } }, { straight_flight, { 100, 45 } }, { scale_figure_eight, { 100, 45 } }, { straight_roll, { 20, 0 } }, { immelmann_turn, { 30, 60 } }, { straight_roll, { 20, 0 } }, { split_s, { 30, 60 } }, { straight_roll, { 20, 0 } }, { upline_45, { 20, 50 } }, { straight_roll, { 20, 0 } }, { downline_45, { 20, 50 } }, { straight_roll, { 20, 0 } }, { procedure_turn, { 40, 45, 20 } }, { straight_roll, { 20, 0 } }, { two_point_roll, { 100 } }, { straight_roll, { 20, 0 } }, { derry_turn, { 40, 60 } }, { straight_roll, { 20, 0 } }, { half_climbing_circle, { -65, 0, -60 } }, { straight_roll, { 20, 0 } }, --[[ { p23_1, { 20, 150, 150 } }, { straight_roll, { 20, 0 } }, { p23_2, { 20, 150 } }, { straight_roll, { 20, 0 } }, { p23_3, { 20, 150 } }, { straight_roll, { 20, 0 } }, { p23_4, { 20, 150 } }, { straight_roll, { 20, 0 } }, { p23_5, { 20, 150 } }, { straight_roll, { 20, 0 } }, { p23_6, { 20, 150 } }, -- now inverted :-) { straight_roll, { 20, 0 } }, --]] }) end --------------------------------------------------- --[[ target speed is taken as max of target airspeed and current 3D velocity at the start of the maneuver --]] function target_groundspeed() return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length()) end --[[ get ground course from AHRS --]] function get_ground_course_deg() local vned = ahrs:get_velocity_NED() return wrap_180(math.deg(math.atan(vned:y(), vned:x()))) end --args: -- path_f: path function returning position -- t: normalised [0, 1] time -- arg1, arg2: arguments for path function -- orientation: maneuver frame orientation --returns: requested position, angle and speed in maneuver frame function rotate_path(path_f, t, orientation, offset) t = constrain(t, 0, 1) point = path_f.get_pos(t) angle = path_f.get_roll(t) speed = path_f.get_speed(t) orientation:earth_to_body(point) return point+offset, math.rad(angle), speed end --Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle --Note that the rotation will not be unique. function vectors_to_rotation(vector1, vector2) axis = vector1:cross(vector2) if axis:length() < 0.00001 then local vec = Vector3f() vec:x(1) return vec, 0 end axis:normalize() angle = vector1:angle(vector2) return axis, angle end --returns Quaternion function vectors_to_rotation_w_roll(vector1, vector2, roll) axis, angle = vectors_to_rotation(vector1, vector2) local vector_rotation = Quaternion() vector_rotation:from_axis_angle(axis, angle) local roll_rotation = Quaternion() roll_rotation:from_euler(roll, 0, 0) local total_rot = vector_rotation*roll_rotation return to_axis_and_angle(total_rot) end --Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle function vectors_to_angular_rate(vector1, vector2, time_constant) axis, angle = vectors_to_rotation(vector1, vector2) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll) axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end -- convert a quaternion to axis angle form function to_axis_and_angle(quat) local axis_angle = Vector3f() quat:to_axis_angle(axis_angle) angle = axis_angle:length() if angle < 0.00001 then return makeVector3f(1.0, 0.0, 0.0), 0.0 end return axis_angle:scale(1.0/angle), angle end --projects x onto the othogonal subspace of span(unit_v) function ortho_proj(x, unit_v) local temp_x = unit_v:cross(x) return unit_v:cross(temp_x) end -- log a pose from position and quaternion attitude function log_pose(logname, pos, quat) logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff', pos:x(), pos:y(), pos:z(), quat:q1(), quat:q2(), quat:q3(), quat:q4(), math.deg(quat:get_euler_roll()), math.deg(quat:get_euler_pitch()), math.deg(quat:get_euler_yaw())) end --[[ check if a number is Nan. --]] function isNaN(value) -- NaN is lua is not equal to itself return value ~= value end function Vec3IsNaN(v) return isNaN(v:x()) or isNaN(v:y()) or isNaN(v:z()) end function qIsNaN(q) return isNaN(q:q1()) or isNaN(q:q2()) or isNaN(q:q3()) or isNaN(q:q4()) end --[[ return the body y projection down, this is the c.y element of the equivalent rotation matrix --]] function quat_projection_ground_plane(q) local q1q2 = q:q1() * q:q2() local q3q4 = q:q3() * q:q4() return 2.0 * (q3q4 + q1q2) end path_var.count = 0 function do_path() local now = millis():tofloat() * 0.001 path_var.count = path_var.count + 1 local target_dt = 1.0/LOOP_RATE local path = current_task.fn if not current_task.started then local initial_yaw_deg = current_task.initial_yaw_deg current_task.started = true local speed = target_groundspeed() path_var.target_speed = speed path_var.length = path.get_length() path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0) --assuming constant velocity path_var.total_time = path_var.length/speed path_var.last_pos = path.get_pos(0) --position at t0 --deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation path_var.initial_ori = Quaternion() path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg)) path_var.initial_ori:normalize() path_var.initial_maneuver_to_earth = Quaternion() path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg)) path_var.initial_maneuver_to_earth:normalize() path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin() path_var.start_pos = ahrs:get_position() path_var.path_int = path_var.start_pos:copy() speed_PI.reset() path_var.accumulated_orientation_rel_ef = path_var.initial_ori path_var.time_correction = 0.0 path_var.filtered_angular_velocity = Vector3f() path_var.last_time = now - 1.0/LOOP_RATE path_var.sideslip_angle_rad = 0.0 path_var.last_ang_rate_dps = ahrs:get_gyro():scale(math.deg(1)) path_var.path_t = 0.0 path_var.tangent = makeVector3f(1,0,0) path_var.initial_maneuver_to_earth:earth_to_body(path_var.tangent) path_var.pos = path_var.initial_ef_pos:copy() path_var.roll = 0.0 path_var.speed = nil return true end local vel_length = ahrs:get_velocity_NED():length() local actual_dt = now - path_var.last_time path_var.last_time = now local local_n_dt = actual_dt/path_var.total_time if path_var.path_t + local_n_dt > 1.0 then -- all done return false end -- airspeed, assume we don't go below min local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs:airspeed_estimate()) --[[ calculate positions and angles at previous, current and next time steps --]] next_target_pos_ef = next_target_pos_ef local p0 = path_var.pos:copy() local r0 = path_var.roll local s0 = path_var.speed local p1, r1, s1 = rotate_path(path, path_var.path_t + local_n_dt, path_var.initial_ori, path_var.initial_ef_pos) local current_measured_pos_ef = ahrs:get_relative_position_NED_origin() --[[ get tangents to the path --]] local tangent1_ef = path_var.tangent:copy() local tangent2_ef = p1 - p0 local tv_unit = tangent2_ef:copy() if tv_unit:length() < 0.00001 then gcs:send_text(0, string.format("path not advancing %f", tv_unit:length())) end tv_unit:normalize() --[[ use actual vehicle velocity to calculate how far along the path we have progressed --]] local v = ahrs:get_velocity_NED() local path_dist = v:dot(tv_unit)*actual_dt if path_dist < 0 then gcs:send_text(0, string.format("aborting %.2f at %d tv=(%.2f,%.2f,%.2f) vx=%.2f adt=%.2f", path_dist, path_var.count, tangent2_ef:x(), tangent2_ef:y(), tangent2_ef:z(), v:x(), actual_dt)) return false end local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt) --[[ recalculate the current path position and angle based on actual delta time --]] p1, r1, s1 = rotate_path(path, constrain(path_var.path_t + path_t_delta, 0, 1), path_var.initial_ori, path_var.initial_ef_pos) path_var.path_t = path_var.path_t + path_t_delta -- get the real world time corresponding to the quaternion change local q_change_t = path_t_delta * path_var.total_time -- tangents needs to be recalculated tangent2_ef = p1 - p0 tv_unit = tangent2_ef:copy() tv_unit:normalize() path_var.tangent = tangent2_ef:copy() path_var.pos = p1:copy() path_var.roll = r1 path_var.speed = s1 -- error in position versus current point on the path local pos_error_ef = current_measured_pos_ef - p1 --[[ calculate a time correction. We first get the projection of the position error onto the track. This tells us how far we are ahead or behind on the track --]] local path_dist_err_m = tv_unit:dot(pos_error_ef) -- normalize against the total path length local path_err_t = path_dist_err_m / path_var.length -- don't allow the path to go backwards in time, or faster than twice the actual rate path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta) -- correct time to bring us back into sync path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t --[[ calculation of error correction, calculating acceleration needed to bring us back on the path, and body rates in pitch and yaw to achieve those accelerations --]] -- component of pos_err perpendicular to the current path tangent local B = ortho_proj(pos_error_ef, tv_unit) -- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant local B_dot = ortho_proj(v, tv_unit) -- gains for error correction. local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get()) local acc_err_bf = ahrs:earth_to_body(acc_err_ef) local TAS = constrain(ahrs:get_EAS2TAS()*airspeed_constrained, 3, 100) local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS local corr_rate_bf_z_rads = acc_err_bf:y()/TAS local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads) if Vec3IsNaN(cor_ang_vel_bf_rads) then cor_ang_vel_bf_rads = makeVector3f(0,0,0) end local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1)) if path_var.count < 2 then cor_ang_vel_bf_dps = Vector3f() end --[[ get the quaternion rotation between tangent1_ef and tangent2_ef --]] local q_delta = vectors_to_quat_rotation(tangent1_ef, tangent2_ef) --[[ work out body frame path rate, this is based on two adjacent tangents on the path --]] local path_rate_ef_rads = Vector3f() q_delta:to_axis_angle(path_rate_ef_rads) path_rate_ef_rads:scale(1.0/q_change_t) if Vec3IsNaN(path_rate_ef_rads) then gcs:send_text(0,string.format("path_rate_ef_rads: NaN")) path_rate_ef_rads = makeVector3f(0,0,0) end local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1)) if path_var.count < 3 then -- cope with small initial misalignment path_rate_ef_dps:z(0) end local path_rate_bf_dps = ahrs:earth_to_body(path_rate_ef_dps) -- set the path roll rate path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/q_change_t)) --[[ calculate body frame roll rate to achieved the desired roll angle relative to the maneuver path --]] path_var.accumulated_orientation_rel_ef = q_delta*path_var.accumulated_orientation_rel_ef path_var.accumulated_orientation_rel_ef:normalize() local mf_axis = makeVector3f(1, 0, 0) path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis) local orientation_rel_mf_with_roll_angle = Quaternion() orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1) orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef --[[ calculate the error correction for the roll versus the desired roll --]] local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse() roll_error:normalize() local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error) local time_const_roll = ROLL_CORR_TC:get() local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll) local err_angle_rate_bf_dps = ahrs:earth_to_body(err_angle_rate_ef_rads):scale(math.deg(1)) -- zero any non-roll components err_angle_rate_bf_dps:y(0) err_angle_rate_bf_dps:z(0) --[[ calculate an additional yaw rate to get us to the right angle of sideslip for knifeedge --]] local g_force = (path_rate_ef_rads:cross(v)):scale(1.0/GRAVITY_MSS) local specific_force_g_ef = g_force - makeVector3f(0,0,-1) local specific_force_g_bf = specific_force_g_ef:copy() orientation_rel_ef_with_roll_angle:earth_to_body(specific_force_g_bf) --local specific_force_g_bf = ahrs:earth_to_body(specific_force_g_ef) local airspeed_scaling = SCALING_SPEED:get()/path_var.target_speed local sideslip_rad = specific_force_g_bf:y() * (airspeed_scaling*airspeed_scaling) * math.rad(AEROM_KE_ANG:get()) local ff_yaw_rate_rads = -(sideslip_rad - path_var.sideslip_angle_rad) / q_change_t path_var.sideslip_angle_rad = sideslip_rad if path_var.count <= 2 then -- prevent an initialisation issue ff_yaw_rate_rads = 0.0 end local sideslip_rate_bf_dps = makeVector3f(0, 0, ff_yaw_rate_rads):scale(math.deg(1)) --[[ total angular rate is sum of path rate, correction rate and roll correction rate --]] local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps + sideslip_rate_bf_dps --[[ apply angular accel limit --]] local ang_rate_diff_dps = tot_ang_vel_bf_dps - path_var.last_ang_rate_dps local max_delta_dps = AEROM_ANG_ACCEL:get() * actual_dt if max_delta_dps > 0 then ang_rate_diff_dps:x(constrain(ang_rate_diff_dps:x(), -max_delta_dps, max_delta_dps)) ang_rate_diff_dps:y(constrain(ang_rate_diff_dps:y(), -max_delta_dps, max_delta_dps)) ang_rate_diff_dps:z(constrain(ang_rate_diff_dps:z(), -max_delta_dps, max_delta_dps)) tot_ang_vel_bf_dps = path_var.last_ang_rate_dps + ang_rate_diff_dps end path_var.last_ang_rate_dps = tot_ang_vel_bf_dps --[[ log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll --]] log_pose('POSM', current_measured_pos_ef, ahrs:get_quaternion()) log_pose('POST', p1, orientation_rel_ef_with_roll_angle) logger.write('AETM', 'T,Terr','ff', path_var.path_t, path_err_t) logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz,Perr,Aerr,Yff', 'fffffffffffff', cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(), path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(), err_angle_rate_bf_dps:x(), tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z(), pos_error_ef:length(), wrap_180(math.deg(err_angle_rad)), math.deg(ff_yaw_rate_rads)) --log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef) --[[ run the throttle based speed controller --]] if s1 == nil then s1 = path_var.target_speed end --[[ get the anticipated pitch at the throttle lookahead time we use the maximum of the current path pitch and the anticipated pitch --]] local qchange = Quaternion() qchange:from_angular_velocity(path_rate_ef_rads, AEROM_THR_LKAHD:get()) local qnew = qchange * orientation_rel_ef_with_roll_angle local anticipated_pitch_rad = math.max(qnew:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_pitch()) throttle = speed_PI.update(s1, anticipated_pitch_rad) throttle = constrain(throttle, 0, 100.0) if isNaN(throttle) or Vec3IsNaN(tot_ang_vel_bf_dps) then gcs:send_text(0,string.format("Path NaN - aborting")) return false end vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z()) if now - last_named_float_t > 1.0 / NAME_FLOAT_RATE then last_named_float_t = now gcs:send_named_float("PERR", pos_error_ef:length()) end return true end --[[ an object defining a path --]] function PathFunction(fn, name) local self = {} self.fn = fn self.name = name return self end command_table = {} command_table[1] = PathFunction(figure_eight, "Figure Eight") command_table[2] = PathFunction(loop, "Loop") command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle") command_table[4] = PathFunction(climbing_circle, "Climbing Circle") command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box") command_table[6] = PathFunction(immelmann_turn_fast, "Immelmann Fast") command_table[7] = PathFunction(straight_roll, "Axial Roll") command_table[8] = PathFunction(rolling_circle, "Rolling Circle") command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight") command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight") command_table[11]= PathFunction(cuban_eight, "Cuban Eight") command_table[12]= PathFunction(humpty_bump, "Humpty Bump") command_table[13]= PathFunction(straight_flight, "Straight Flight") command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight") command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn") command_table[16]= PathFunction(split_s, "Split-S") command_table[17]= PathFunction(upline_45, "Upline-45") command_table[18]= PathFunction(downline_45, "Downline-45") command_table[19]= PathFunction(stall_turn, "Stall Turn") command_table[20]= PathFunction(procedure_turn, "Procedure Turn") command_table[21]= PathFunction(derry_turn, "Derry Turn") command_table[22]= PathFunction(two_point_roll, "Two Point Roll") command_table[23]= PathFunction(half_climbing_circle, "Half Climbing Circle") command_table[24]= PathFunction(crossbox_humpty, "Crossbox Humpty") command_table[25]= PathFunction(laydown_humpty, "Laydown Humpty") command_table[200] = PathFunction(test_all_paths, "Test Suite") command_table[201] = PathFunction(nz_clubman, "NZ Clubman") command_table[202] = PathFunction(f3a_p23_l_r, "FAI F3A P23 L to R") command_table[203] = PathFunction(f4c_example_l_r, "FAI F4C Example L to R") command_table[204] = PathFunction(air_show1, "AirShow") command_table[205] = PathFunction(fai_f3a_box_l_r, "FAI F3A Aerobatic Box Demonstration") command_table[206] = PathFunction(air_show3, "AirShow3") -- get a location structure from a waypoint number function get_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(true) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end -- set wp location function wp_setloc(wp, loc) wp:x(loc:lat()) wp:y(loc:lng()) wp:z(loc:alt()*0.01) end -- add a waypoint to the end of the mission function wp_add(loc,ctype,param1,param2) local wp = mavlink_mission_item_int_t() wp_setloc(wp,loc) wp:command(ctype) local seq = mission:num_commands() wp:seq(seq) wp:param1(param1) wp:param2(param2) wp:frame(3) -- global position, relative alt mission:set_item(seq, wp) end -- add a NAV_SCRIPT_TIME waypoint to the end of the mission function wp_add_nav_script(cmdid,arg1,arg2,arg3,arg4) local wp = mavlink_mission_item_int_t() wp:command(NAV_SCRIPT_TIME) local seq = mission:num_commands() wp:seq(seq) wp:param1(cmdid) wp:param2(0) -- timeout wp:param3(arg1) wp:param4(arg2) wp:x(arg3) wp:y(arg4) mission:set_item(seq, wp) end --[[ create auto mission 1 --]] function create_auto_mission1() local N = mission:num_commands() if N ~= 4 then gcs:send_text(0,string.format("Auto mission needs takeoff and 2 WPs (got %u)", N)) return end local takeoff_m = mission:get_item(1) if takeoff_m:command() ~= NAV_TAKEOFF then gcs:send_text(0,string.format("First WP needs to be takeoff")) return end local wp1 = get_location(2) local wp2 = get_location(3) local wp_dist = wp1:get_distance(wp2) local wp_bearing = math.deg(wp1:get_bearing(wp2)) local radius = AUTO_RAD:get() gcs:send_text(0, string.format("WP Distance %.0fm bearing %.1fdeg", wp_dist, wp_bearing)) -- find mid-point, 25% and 75% points local wp_mid = wp1:copy() wp_mid:offset_bearing(wp_bearing, wp_dist*0.5) local wp_25pct = wp1:copy() wp_25pct:offset_bearing(wp_bearing, wp_dist*0.25) local wp_75pct = wp1:copy() wp_75pct:offset_bearing(wp_bearing, wp_dist*0.75) gcs:send_text(0,"Adding half cuban eight") wp_add_nav_script(9, radius, 0, 0, 0) gcs:send_text(0,"Adding loop") wp_add(wp_mid, NAV_WAYPOINT, 0, 1) wp_add_nav_script(2, radius, 0, 0, 0) gcs:send_text(0,"Adding half reverse cuban eight") wp_add(wp1, NAV_WAYPOINT, 0, 0) wp_add_nav_script(10, radius, 0, 0, 0) gcs:send_text(0,"Adding axial roll") wp_add(wp_25pct, NAV_WAYPOINT, 0, 1) wp_add_nav_script(7, wp_dist*0.5, 1, 0, 0) gcs:send_text(0,"Adding humpty bump") wp_add(wp2, NAV_WAYPOINT, 0, 1) wp_add_nav_script(12, radius*0.25, 0.5*radius, 0, 0) gcs:send_text(0,"Adding cuban eight") wp_add(wp_mid, NAV_WAYPOINT, 0, 0) wp_add_nav_script(11, radius, 0, 0, 0) wp_add(wp1, NAV_WAYPOINT, 0, 0) end function create_auto_mission() if AUTO_MIS:get() == 1 then create_auto_mission1() else gcs:send_text(0, string.format("Unknown auto mission", AUTO_MIS:get())) end end function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) self = {} self.fn = fn(arg1, arg2, arg3, arg4) self.name = name self.id = id self.initial_yaw_deg = initial_yaw_deg self.started = false return self end -- see if an auto mission item needs to be run function check_auto_mission() id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time() if not id then return end if id ~= last_id then -- we've started a new command current_task = nil last_id = id local initial_yaw_deg = get_ground_course_deg() gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name )) -- work out yaw between previous WP and next WP local cnum = mission:get_current_nav_index() -- find previous nav waypoint local loc_prev = get_wp_location(cnum-1) local loc_next = get_wp_location(cnum+1) local i= cnum-1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i-1 loc_prev = get_wp_location(i) end -- find next nav waypoint i = cnum+1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i+1 loc_next = get_wp_location(resolve_jump(i)) end local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next)) if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then gcs:send_text(0, string.format("Doing turnaround!")) wp_yaw_deg = wrap_180(wp_yaw_deg + 180) end initial_yaw_deg = wp_yaw_deg current_task = PathTask(command_table[cmd].fn, command_table[cmd].name, id, initial_yaw_deg, arg1, arg2, arg3, arg4) end end local last_trick_action_state = 0 local trick_sel_chan = nil local last_trick_selection = nil --[[ get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid --]] function get_trick_selection() if trick_sel_chan == nil then trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get()) if trick_sel_chan == nil then return 0 end end -- get trick selection based on selection channel input and number of tricks local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1) if TRICKS[i] == nil then return 0 end return i end --[[ check for running a trick --]] function check_trick() local selection = get_trick_selection() local action = rc:get_aux_cached(TRIK_ACT_FN:get()) if action == 0 and current_task ~= nil then gcs:send_text(0,string.format("Trick aborted")) current_task = nil last_trick_selection = nil -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) return end if selection == 0 then return end if action == 1 and selection ~= last_trick_selection then local id = TRICKS[selection].id:get() if command_table[id] ~= nil then local cmd = command_table[id] gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) last_trick_selection = selection return end end if current_task ~= nil then -- let the task finish return end if action ~= last_trick_action_state then last_trick_selection = selection last_trick_action_state = action if selection == 0 then gcs:send_text(0, string.format("No trick selected")) return end local id = TRICKS[selection].id:get() if command_table[id] == nil then gcs:send_text(0, string.format("Invalid trick ID %u", id)) return end local cmd = command_table[id] if action == 1 then gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name)) end if action == 2 then last_trick_selection = nil local current_mode = vehicle:get_mode() if not vehicle:nav_scripting_enable(current_mode) then gcs:send_text(0, string.format("Tricks not available in mode")) return end gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name)) local initial_yaw_deg = get_ground_course_deg() current_task = PathTask(cmd.fn, cmd.name, nil, initial_yaw_deg, TRICKS[selection].args[1]:get(), TRICKS[selection].args[2]:get(), TRICKS[selection].args[3]:get(), TRICKS[selection].args[4]:get()) end end end function update() -- check if we should create a mission if AUTO_MIS:get() > 0 then create_auto_mission() AUTO_MIS:set_and_save(0) end if vehicle:get_mode() == MODE_AUTO then check_auto_mission() elseif TRICKS ~= nil then check_trick() end if current_task ~= nil then if not do_path() then gcs:send_text(0, string.format("Finishing %s!", current_task.name)) if current_task.id ~= nil then vehicle:nav_script_time_done(current_task.id) else -- use invalid mode to disable script control vehicle:nav_scripting_enable(255) end current_task = nil end end return update, 1000.0/LOOP_RATE end return update()