#include "AP_Motors_Thrust_Linearization.h" #include "AP_Motors_Class.h" #include #include #include #define AP_MOTORS_BATT_VOLT_FILT_HZ 0.5 // battery voltage filtered at 0.5hz #if APM_BUILD_TYPE(APM_BUILD_UNKNOWN) // Example does not instantiate baro so cannot do density compensation #define AP_MOTORS_DENSITY_COMP 0 #else #ifndef AP_MOTORS_DENSITY_COMP #define AP_MOTORS_DENSITY_COMP 1 #endif #endif Thrust_Linearization::Thrust_Linearization(AP_Motors& _motors) : motors(_motors), lift_max(1.0) { // setup battery voltage filtering batt_voltage_filt.set_cutoff_frequency(AP_MOTORS_BATT_VOLT_FILT_HZ); batt_voltage_filt.reset(1.0); } // converts desired thrust to linearized actuator output in a range of 0~1 float Thrust_Linearization::thrust_to_actuator(float thrust_in) const { thrust_in = constrain_float(thrust_in, 0.0, 1.0); return spin_min + (spin_max - spin_min) * apply_thrust_curve_and_volt_scaling(thrust_in); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float Thrust_Linearization::actuator_to_thrust(float actuator) const { actuator = (actuator - spin_min) / (spin_max - spin_min); return constrain_float(remove_thrust_curve_and_volt_scaling(actuator), 0.0, 1.0); } // apply_thrust_curve_and_volt_scaling - returns throttle in the range 0 ~ 1 float Thrust_Linearization::apply_thrust_curve_and_volt_scaling(float thrust) const { float battery_scale = 1.0; if (is_positive(batt_voltage_filt.get())) { battery_scale = 1.0 / batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return lift_max * thrust * battery_scale; } float throttle_ratio = ((thrust_curve_expo - 1.0) + safe_sqrt((1.0 - thrust_curve_expo) * (1.0 - thrust_curve_expo) + 4.0 * thrust_curve_expo * lift_max * thrust)) / (2.0 * thrust_curve_expo); return constrain_float(throttle_ratio * battery_scale, 0.0, 1.0); } // inverse of above, tested with AP_Motors/examples/expo_inverse_test // used to calculate equivelent motor throttle level to direct ouput, used in tailsitter transtions float Thrust_Linearization::remove_thrust_curve_and_volt_scaling(float throttle) const { float battery_scale = 1.0; if (is_positive(batt_voltage_filt.get())) { battery_scale = 1.0 / batt_voltage_filt.get(); } // apply thrust curve - domain -1.0 to 1.0, range -1.0 to 1.0 float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); if (is_zero(thrust_curve_expo)) { // zero expo means linear, avoid floating point exception for small values return throttle / (lift_max * battery_scale); } float thrust = ((throttle / battery_scale) * (2.0 * thrust_curve_expo)) - (thrust_curve_expo - 1.0); thrust = (thrust * thrust) - ((1.0 - thrust_curve_expo) * (1.0 - thrust_curve_expo)); thrust /= 4.0 * thrust_curve_expo * lift_max; return constrain_float(thrust, 0.0, 1.0); } // update_lift_max from battery voltage - used for voltage compensation void Thrust_Linearization::update_lift_max_from_batt_voltage() { // sanity check battery_voltage_min is not too small // if disabled or misconfigured exit immediately float _batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(batt_idx); if ((batt_voltage_max <= 0) || (batt_voltage_min >= batt_voltage_max) || (_batt_voltage_resting_estimate < 0.25 * batt_voltage_min)) { batt_voltage_filt.reset(1.0); lift_max = 1.0; return; } batt_voltage_min.set(MAX(batt_voltage_min, batt_voltage_max * 0.6)); // contrain resting voltage estimate (resting voltage is actual voltage with sag removed based on current draw and resistance) _batt_voltage_resting_estimate = constrain_float(_batt_voltage_resting_estimate, batt_voltage_min, batt_voltage_max); // filter at 0.5 Hz float batt_voltage_flittered = batt_voltage_filt.apply(_batt_voltage_resting_estimate / batt_voltage_max, motors.get_dt()); // calculate lift max float thrust_curve_expo = constrain_float(curve_expo, -1.0, 1.0); lift_max = batt_voltage_flittered * (1 - thrust_curve_expo) + thrust_curve_expo * batt_voltage_flittered * batt_voltage_flittered; } // return gain scheduling gain based on voltage and air density float Thrust_Linearization::get_compensation_gain() const { // avoid divide by zero if (get_lift_max() <= 0.0) { return 1.0; } float ret = 1.0 / get_lift_max(); #if AP_MOTORS_DENSITY_COMP == 1 // air density ratio is increasing in density / decreasing in altitude const float air_density_ratio = AP::baro().get_air_density_ratio(); if (air_density_ratio > 0.3 && air_density_ratio < 1.5) { ret *= 1.0 / constrain_float(air_density_ratio, 0.5, 1.25); } #endif return ret; }