/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * AP_Compass_AK8963.cpp * Code by Georgii Staroselskii. Emlid.com * * Sensor is connected to SPI port * */ #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_Compass_AK8963.h" #include "../AP_InertialSensor/AP_InertialSensor_MPU9250.h" #define READ_FLAG 0x80 #define MPUREG_I2C_SLV0_ADDR 0x25 #define MPUREG_I2C_SLV0_REG 0x26 #define MPUREG_I2C_SLV0_CTRL 0x27 #define MPUREG_EXT_SENS_DATA_00 0x49 #define MPUREG_I2C_SLV0_DO 0x63 #define MPUREG_PWR_MGMT_1 0x6B # define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator # define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference # define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference # define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference # define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset # define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor # define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL # define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode # define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device /* bit definitions for MPUREG_USER_CTRL */ #define MPUREG_USER_CTRL 0x6A # define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */ # define BIT_USER_CTRL_I2C_IF_DIS 0x10 /* bit definitions for MPUREG_MST_CTRL */ #define MPUREG_I2C_MST_CTRL 0x24 # define I2C_SLV0_EN 0x80 # define I2C_MST_CLOCK_400KHZ 0x0D # define I2C_MST_CLOCK_258KHZ 0x08 #define AK8963_I2C_ADDR 0x0c #define AK8963_WIA 0x00 # define AK8963_Device_ID 0x48 #define AK8963_INFO 0x01 #define AK8963_ST1 0x02 # define AK8963_DRDY 0x01 # define AK8963_DOR 0x02 #define AK8963_HXL 0x03 /* bit definitions for AK8963 CNTL1 */ #define AK8963_CNTL1 0x0A # define AK8963_CONTINUOUS_MODE1 0x2 # define AK8963_CONTINUOUS_MODE2 0x6 # define AK8963_SELFTEST_MODE 0x8 # define AK8963_POWERDOWN_MODE 0x0 # define AK8963_FUSE_MODE 0xf # define AK8963_16BIT_ADC 0x10 # define AK8963_14BIT_ADC 0x00 #define AK8963_CNTL2 0x0B # define AK8963_RESET 0x01 #define AK8963_ASTC 0x0C # define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40 #define AK8963_ASAX 0x10 #define AK8963_DEBUG 0 #if AK8963_DEBUG #include #define error(...) do { fprintf(stderr, __VA_ARGS__); } while (0) #define ASSERT(x) assert(x) #else #define error(...) do { } while (0) #ifndef ASSERT #define ASSERT(x) #endif #endif #if !defined(HAL_COMPASS_AK8963_I2C_ADDR) #define HAL_COMPASS_AK8963_I2C_ADDR 0xC #endif extern const AP_HAL::HAL& hal; AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass, AP_AK8963_SerialBus *bus) : AP_Compass_Backend(compass), _state(STATE_UNKNOWN), _initialized(false), _last_update_timestamp(0), _last_accum_time(0), _bus(bus) { _mag_x_accum =_mag_y_accum = _mag_z_accum = 0; _mag_x =_mag_y = _mag_z = 0; _accum_count = 0; _magnetometer_adc_resolution = AK8963_16BIT_ADC; } AP_Compass_Backend *AP_Compass_AK8963::detect_mpu9250(Compass &compass) { AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, new AP_AK8963_SerialBus_MPU9250()); if (sensor == nullptr) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_Backend *AP_Compass_AK8963::detect_i2c1(Compass &compass) { AP_Compass_AK8963 *sensor = new AP_Compass_AK8963(compass, new AP_AK8963_SerialBus_I2C( hal.i2c1, HAL_COMPASS_AK8963_I2C_ADDR)); if (sensor == nullptr) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } /* stub to satisfy Compass API*/ void AP_Compass_AK8963::accumulate(void) { } bool AP_Compass_AK8963::init() { _bus_sem = _bus->get_semaphore(); hal.scheduler->suspend_timer_procs(); if (!_bus_sem->take(100)) { hal.console->printf("AK8963: Unable to get bus semaphore"); goto fail_sem; } if (!_bus->configure()) { hal.console->printf_P(PSTR("AK8963: Bus not configured for AK8963\n")); goto fail; } if (!_configure()) { hal.console->printf_P(PSTR("AK8963: not configured\n")); goto fail; } if (!_check_id()) { hal.console->printf_P(PSTR("AK8963: wrong id\n")); goto fail; } if (!_calibrate()) { hal.console->printf_P(PSTR("AK8963: not calibrated\n")); goto fail; } if (!_bus->start_conversion()) { hal.console->printf_P(PSTR("AK8963: conversion not started\n")); goto fail; } _state = STATE_SAMPLE; _initialized = true; /* register the compass instance in the frontend */ _compass_instance = register_compass(); set_dev_id(_compass_instance, _bus->get_dev_id()); hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Compass_AK8963::_update, void)); _bus_sem->give(); hal.scheduler->resume_timer_procs(); return true; fail: _bus_sem->give(); fail_sem: hal.scheduler->resume_timer_procs(); return false; } void AP_Compass_AK8963::read() { if (!_initialized) { return; } if (_accum_count == 0) { /* We're not ready to publish*/ return; } /* Update */ Vector3f field(_mag_x_accum * _magnetometer_ASA[0], _mag_y_accum * _magnetometer_ASA[1], _mag_z_accum * _magnetometer_ASA[2]); field /= _accum_count; _mag_x_accum = _mag_y_accum = _mag_z_accum = 0; _accum_count = 0; #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP field.rotate(ROTATION_YAW_90); #endif publish_field(field, _compass_instance); } void AP_Compass_AK8963::_update() { if (hal.scheduler->micros() - _last_update_timestamp < 10000) { return; } if (!_sem_take_nonblocking()) { return; } switch (_state) { case STATE_SAMPLE: if (!_collect_samples()) { _state = STATE_ERROR; } break; case STATE_ERROR: if (_bus->start_conversion()) { _state = STATE_SAMPLE; } break; default: break; } _last_update_timestamp = hal.scheduler->micros(); _sem_give(); } bool AP_Compass_AK8963::_check_id() { for (int i = 0; i < 5; i++) { uint8_t deviceid; _bus->register_read(AK8963_WIA, &deviceid, 0x01); /* Read AK8963's id */ if (deviceid == AK8963_Device_ID) { return true; } } return false; } bool AP_Compass_AK8963::_configure() { _bus->register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution); return true; } bool AP_Compass_AK8963::_reset() { _bus->register_write(AK8963_CNTL2, AK8963_RESET); return true; } bool AP_Compass_AK8963::_calibrate() { uint8_t cntl1 = _bus->register_read(AK8963_CNTL1); _bus->register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */ uint8_t response[3]; _bus->register_read(AK8963_ASAX, response, 3); for (int i = 0; i < 3; i++) { float data = response[i]; _magnetometer_ASA[i] = ((data - 128) / 256 + 1); error("%d: %lf\n", i, _magnetometer_ASA[i]); } _bus->register_write(AK8963_CNTL1, cntl1); return true; } bool AP_Compass_AK8963::_collect_samples() { if (!_initialized) { return false; } if (!_bus->read_raw(_mag_x, _mag_y, _mag_z)) { return false; } else { _mag_x_accum += _mag_x; _mag_y_accum += _mag_y; _mag_z_accum += _mag_z; _accum_count++; if (_accum_count == 10) { _mag_x_accum /= 2; _mag_y_accum /= 2; _mag_z_accum /= 2; _accum_count = 5; } } return true; } bool AP_Compass_AK8963::_sem_take_blocking() { return _bus_sem->take(10); } bool AP_Compass_AK8963::_sem_give() { return _bus_sem->give(); } bool AP_Compass_AK8963::_sem_take_nonblocking() { static int _sem_failure_count = 0; bool got = _bus_sem->take_nonblocking(); if (!got) { if (!hal.scheduler->system_initializing()) { _sem_failure_count++; if (_sem_failure_count > 100) { hal.scheduler->panic(PSTR("PANIC: failed to take _bus->sem " "100 times in a row, in " "AP_Compass_AK8963")); } } return false; /* never reached */ } else { _sem_failure_count = 0; } return got; } void AP_Compass_AK8963::_dump_registers() { #if AK8963_DEBUG error("MPU9250 registers\n"); static uint8_t regs[0x7e]; _bus_read(0x0, regs, 0x7e); for (uint8_t reg=0x00; reg<=0x7E; reg++) { uint8_t v = regs[reg]; error(("%d:%02x "), (unsigned)reg, (unsigned)v); if (reg % 16 == 0) { error("\n"); } } error("\n"); #endif } /* MPU9250 implementation of the AK8963 */ AP_AK8963_SerialBus_MPU9250::AP_AK8963_SerialBus_MPU9250() { _spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250); if (_spi == NULL) { hal.console->println_P(PSTR("Cannot get SPIDevice_MPU9250")); return; } } void AP_AK8963_SerialBus_MPU9250::register_write(uint8_t address, uint8_t value) { _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for register_write. */ _write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */ _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */ } void AP_AK8963_SerialBus_MPU9250::register_read(uint8_t address, uint8_t *value, uint8_t count) { _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ _write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ hal.scheduler->delay(10); _read(MPUREG_EXT_SENS_DATA_00, value, count); } void AP_AK8963_SerialBus_MPU9250::_read(uint8_t address, uint8_t *buf, uint32_t count) { ASSERT(count < 150); uint8_t tx[150]; uint8_t rx[150]; tx[0] = address | READ_FLAG; tx[1] = 0; _spi->transaction(tx, rx, count + 1); memcpy(buf, rx + 1, count); } void AP_AK8963_SerialBus_MPU9250::_write(uint8_t address, const uint8_t *buf, uint32_t count) { ASSERT(count < 2); uint8_t tx[2]; tx[0] = address; memcpy(tx+1, buf, count); _spi->transaction(tx, NULL, count + 1); } bool AP_AK8963_SerialBus_MPU9250::configure() { if (!AP_InertialSensor_MPU9250::initialize_driver_state()) return false; uint8_t user_ctrl; register_read(MPUREG_USER_CTRL, &user_ctrl, 1); _write(MPUREG_USER_CTRL, user_ctrl | BIT_USER_CTRL_I2C_MST_EN); _write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); return true; } bool AP_AK8963_SerialBus_MPU9250::read_raw(float &mag_x, float &mag_y, float &mag_z) { uint8_t rx[14] = {0}; const uint8_t count = 9; _read(MPUREG_EXT_SENS_DATA_00, rx, count); uint8_t st2 = rx[8]; /* End data read by reading ST2 register */ #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx])) if(!(st2 & 0x08)) { mag_x = (float) int16_val(rx, 1); mag_y = (float) int16_val(rx, 2); mag_z = (float) int16_val(rx, 3); if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) { return false; } return true; } else { return false; } } AP_HAL::Semaphore * AP_AK8963_SerialBus_MPU9250::get_semaphore() { return _spi->get_semaphore(); } bool AP_AK8963_SerialBus_MPU9250::start_conversion() { static const uint8_t address = AK8963_INFO; /* Read registers from INFO through ST2 */ static const uint8_t count = 0x09; configure(); _write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */ _write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */ _write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */ return true; } uint32_t AP_AK8963_SerialBus_MPU9250::get_dev_id() { return AP_COMPASS_TYPE_AK8963_MPU9250; } /* I2C implementation of the AK8963 */ AP_AK8963_SerialBus_I2C::AP_AK8963_SerialBus_I2C(AP_HAL::I2CDriver *i2c, uint8_t addr) : _i2c(i2c), _addr(addr) { } void AP_AK8963_SerialBus_I2C::register_write(uint8_t address, uint8_t value) { _i2c->writeRegister(_addr, address, value); } void AP_AK8963_SerialBus_I2C::register_read(uint8_t address, uint8_t *value, uint8_t count) { _i2c->readRegisters(_addr, address, count, value); } bool AP_AK8963_SerialBus_I2C::read_raw(float &mag_x, float &mag_y, float &mag_z) { uint8_t rx[9] = {0}; const uint8_t count = 9; _i2c->readRegisters(_addr, AK8963_INFO, count, rx); uint8_t st2 = rx[8]; /* End data read by reading ST2 register */ #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx])) if(!(st2 & 0x08)) { mag_x = (float) int16_val(rx, 1); mag_y = (float) int16_val(rx, 2); mag_z = (float) int16_val(rx, 3); if (is_zero(mag_x) && is_zero(mag_y) && is_zero(mag_z)) { return false; } return true; } else { return false; } } AP_HAL::Semaphore * AP_AK8963_SerialBus_I2C::get_semaphore() { return _i2c->get_semaphore(); } uint32_t AP_AK8963_SerialBus_I2C::get_dev_id() { return AP_COMPASS_TYPE_AK8963_I2C; } #endif // CONFIG_HAL_BOARD