/* control of servo output ranges, trim and servo reversal. This can optionally be used to provide separation of input and output channel ranges so that RCn_MIN, RCn_MAX, RCn_TRIM and RCn_REV only apply to the input side of RC_Channel It works by running servo output calculations as normal, then re-mapping the output according to the servo MIN/MAX/TRIM/REV from this object Only 4 channels of ranges are defined as those match the input channels for R/C sticks */ #pragma once #include <AP_Common/AP_Common.h> #include <AP_Param/AP_Param.h> #include <AP_RCMapper/AP_RCMapper.h> #include <AP_Common/Bitmask.h> #define NUM_SERVO_CHANNELS 16 class SRV_Channels; /* class SRV_Channel. The class SRV_Channels contains an array of SRV_Channel objects. This is done to fit within the AP_Param limit of 64 parameters per object. */ class SRV_Channel { public: friend class SRV_Channels; // constructor SRV_Channel(void); static const struct AP_Param::GroupInfo var_info[]; typedef enum { k_none = 0, ///< disabled k_manual = 1, ///< manual, just pass-thru the RC in signal k_flap = 2, ///< flap k_flap_auto = 3, ///< flap automated k_aileron = 4, ///< aileron k_unused1 = 5, ///< unused function k_mount_pan = 6, ///< mount yaw (pan) k_mount_tilt = 7, ///< mount pitch (tilt) k_mount_roll = 8, ///< mount roll k_mount_open = 9, ///< mount open (deploy) / close (retract) k_cam_trigger = 10, ///< camera trigger k_egg_drop = 11, ///< egg drop k_mount2_pan = 12, ///< mount2 yaw (pan) k_mount2_tilt = 13, ///< mount2 pitch (tilt) k_mount2_roll = 14, ///< mount2 roll k_mount2_open = 15, ///< mount2 open (deploy) / close (retract) k_dspoiler1 = 16, ///< differential spoiler 1 (left wing) k_dspoiler2 = 17, ///< differential spoiler 2 (right wing) k_aileron_with_input = 18, ///< aileron, with rc input k_elevator = 19, ///< elevator k_elevator_with_input = 20, ///< elevator, with rc input k_rudder = 21, ///< secondary rudder channel k_sprayer_pump = 22, ///< crop sprayer pump channel k_sprayer_spinner = 23, ///< crop sprayer spinner channel k_flaperon1 = 24, ///< flaperon, left wing k_flaperon2 = 25, ///< flaperon, right wing k_steering = 26, ///< ground steering, used to separate from rudder k_parachute_release = 27, ///< parachute release k_gripper = 28, ///< gripper k_landing_gear_control = 29, ///< landing gear controller k_engine_run_enable = 30, ///< engine kill switch, used for gas airplanes and helicopters k_heli_rsc = 31, ///< helicopter RSC output k_heli_tail_rsc = 32, ///< helicopter tail RSC output k_motor1 = 33, ///< these allow remapping of copter motors k_motor2 = 34, k_motor3 = 35, k_motor4 = 36, k_motor5 = 37, k_motor6 = 38, k_motor7 = 39, k_motor8 = 40, k_motor_tilt = 41, ///< tiltrotor motor tilt control k_rcin1 = 51, ///< these are for pass-thru from arbitrary rc inputs k_rcin2 = 52, k_rcin3 = 53, k_rcin4 = 54, k_rcin5 = 55, k_rcin6 = 56, k_rcin7 = 57, k_rcin8 = 58, k_rcin9 = 59, k_rcin10 = 60, k_rcin11 = 61, k_rcin12 = 62, k_rcin13 = 63, k_rcin14 = 64, k_rcin15 = 65, k_rcin16 = 66, k_ignition = 67, k_choke = 68, k_starter = 69, k_throttle = 70, k_tracker_yaw = 71, ///< antennatracker yaw k_tracker_pitch = 72, ///< antennatracker pitch k_throttleLeft = 73, k_throttleRight = 74, k_nr_aux_servo_functions ///< This must be the last enum value (only add new values _before_ this one) } Aux_servo_function_t; // used to get min/max/trim limit value based on reverse enum LimitValue { SRV_CHANNEL_LIMIT_TRIM, SRV_CHANNEL_LIMIT_MIN, SRV_CHANNEL_LIMIT_MAX, SRV_CHANNEL_LIMIT_ZERO_PWM }; // set the output value as a pwm value void set_output_pwm(uint16_t pwm); // get the output value as a pwm value uint16_t get_output_pwm(void) const { return output_pwm; } // set angular range of scaled output void set_angle(int16_t angle); // set range of scaled output. Low is always zero void set_range(uint16_t high); // return true if the channel is reversed bool get_reversed(void) const { return reversed?true:false; } // set MIN/MAX parameters void set_output_min(uint16_t pwm) { servo_min.set(pwm); } void set_output_max(uint16_t pwm) { servo_max.set(pwm); } // get MIN/MAX/TRIM parameters uint16_t get_output_min(void) const { return servo_min; } uint16_t get_output_max(void) const { return servo_max; } uint16_t get_trim(void) const { return servo_trim; } private: AP_Int16 servo_min; AP_Int16 servo_max; AP_Int16 servo_trim; // reversal, following convention that 1 means reversed, 0 means normal AP_Int8 reversed; AP_Int8 function; // a pending output value as PWM uint16_t output_pwm; // true for angle output type bool type_angle:1; // set_range() or set_angle() has been called bool type_setup:1; // the hal channel number uint8_t ch_num; // high point of angle or range output uint16_t high_out; // convert a 0..range_max to a pwm uint16_t pwm_from_range(int16_t scaled_value) const; // convert a -angle_max..angle_max to a pwm uint16_t pwm_from_angle(int16_t scaled_value) const; // convert a scaled output to a pwm value void calc_pwm(int16_t output_scaled); // output value based on function void output_ch(void); // setup output type and range based on function void aux_servo_function_setup(void); // return PWM for a given limit value uint16_t get_limit_pwm(LimitValue limit) const; // get normalised output from -1 to 1 float get_output_norm(void); // a bitmask type wide enough for NUM_SERVO_CHANNELS typedef uint16_t servo_mask_t; // mask of channels where we have a output_pwm value. Cleared when a // scaled value is written. static servo_mask_t have_pwm_mask; }; /* class SRV_Channels */ class SRV_Channels { public: friend class SRV_Channel; // constructor SRV_Channels(void); static const struct AP_Param::GroupInfo var_info[]; // set the default function for a channel static void set_default_function(uint8_t chan, SRV_Channel::Aux_servo_function_t function); // set output value for a function channel as a pwm value static void set_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t value); // set output value for a function channel as a pwm value on the first matching channel static void set_output_pwm_first(SRV_Channel::Aux_servo_function_t function, uint16_t value); // set output value for a function channel as a scaled value. This // calls calc_pwm() to also set the pwm value static void set_output_scaled(SRV_Channel::Aux_servo_function_t function, int16_t value); // get scaled output for the given function type. static int16_t get_output_scaled(SRV_Channel::Aux_servo_function_t function); // get pwm output for the first channel of the given function type. static bool get_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t &value); // get normalised output (-1 to 1 for angle, 0 to 1 for range). Value is taken from pwm value // return zero on error. static float get_output_norm(SRV_Channel::Aux_servo_function_t function); // limit slew rate to given limit in percent per second static void limit_slew_rate(SRV_Channel::Aux_servo_function_t function, float slew_rate, float dt); // call output_ch() on all channels static void output_ch_all(void); // setup output ESC scaling based on a channels MIN/MAX void set_esc_scaling_for(SRV_Channel::Aux_servo_function_t function); // return true when auto_trim enabled bool auto_trim_enabled(void) const { return auto_trim; } // adjust trim of a channel by a small increment void adjust_trim(SRV_Channel::Aux_servo_function_t function, float v); // save trims void save_trim(void); // setup for a reversible k_throttle (from -100 to 100) void set_reversible_throttle(void) { flags.k_throttle_reversible = true; } // set all outputs to the TRIM value static void output_trim_all(void); // setup IO failsafe for all channels to trim static void setup_failsafe_trim_all(void); // set output for all channels matching the given function type, allow radio_trim to center servo static void set_output_pwm_trimmed(SRV_Channel::Aux_servo_function_t function, int16_t value); // set and save the trim for a function channel to radio_in on matching input channel static void set_trim_to_radio_in_for(SRV_Channel::Aux_servo_function_t function); // set the trim for a function channel to min of the channel static void set_trim_to_min_for(SRV_Channel::Aux_servo_function_t function); // set the trim for a function channel to given pwm static void set_trim_to_pwm_for(SRV_Channel::Aux_servo_function_t function, int16_t pwm); // set output to min value static void set_output_to_min(SRV_Channel::Aux_servo_function_t function); // set output to max value static void set_output_to_max(SRV_Channel::Aux_servo_function_t function); // set output to trim value static void set_output_to_trim(SRV_Channel::Aux_servo_function_t function); // copy radio_in to radio_out static void copy_radio_in_out(SRV_Channel::Aux_servo_function_t function, bool do_input_output=false); // setup failsafe for an auxiliary channel function, by pwm static void set_failsafe_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t pwm); // setup failsafe for an auxiliary channel function static void set_failsafe_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit); // setup safety for an auxiliary channel function (used when disarmed) static void set_safety_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit); // set servo to a LimitValue static void set_output_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit); // return true if a function is assigned to a channel static bool function_assigned(SRV_Channel::Aux_servo_function_t function); // set a servo_out value, and angle range, then calc_pwm static void move_servo(SRV_Channel::Aux_servo_function_t function, int16_t value, int16_t angle_min, int16_t angle_max); // assign and enable auxiliary channels static void enable_aux_servos(void); // return the current function for a channel static SRV_Channel::Aux_servo_function_t channel_function(uint8_t channel); // refresh aux servo to function mapping static void update_aux_servo_function(void); // set default channel for an auxiliary function static bool set_aux_channel_default(SRV_Channel::Aux_servo_function_t function, uint8_t channel); // find first channel that a function is assigned to static bool find_channel(SRV_Channel::Aux_servo_function_t function, uint8_t &chan); // find first channel that a function is assigned to, returning SRV_Channel object static SRV_Channel *get_channel_for(SRV_Channel::Aux_servo_function_t function, int8_t default_chan=-1); // call set_angle() on matching channels static void set_angle(SRV_Channel::Aux_servo_function_t function, uint16_t angle); // call set_range() on matching channels static void set_range(SRV_Channel::Aux_servo_function_t function, uint16_t range); // control pass-thru of channels void disable_passthrough(bool disable) { disabled_passthrough = disable; } // constrain to output min/max for function static void constrain_pwm(SRV_Channel::Aux_servo_function_t function); // calculate PWM for all channels static void calc_pwm(void); static SRV_Channel *srv_channel(uint8_t i) { return i<NUM_SERVO_CHANNELS?&channels[i]:nullptr; } // upgrade RC* parameters into SERVO* parameters static bool upgrade_parameters(const uint8_t old_keys[14], uint16_t aux_channel_mask, RCMapper *rcmap); static void upgrade_motors_servo(uint8_t ap_motors_key, uint8_t ap_motors_idx, uint8_t new_channel); private: struct { bool k_throttle_reversible:1; } flags; static bool disabled_passthrough; SRV_Channel::servo_mask_t trimmed_mask; static Bitmask function_mask; static bool initialised; // this static arrangement is to avoid having static objects in AP_Param tables static SRV_Channel *channels; SRV_Channel obj_channels[NUM_SERVO_CHANNELS]; static struct srv_function { // mask of what channels this applies to SRV_Channel::servo_mask_t channel_mask; // scaled output for this function int16_t output_scaled; } functions[SRV_Channel::k_nr_aux_servo_functions]; AP_Int8 auto_trim; // return true if passthrough is disabled static bool passthrough_disabled(void) { return disabled_passthrough; } };