#include "Sub.h"

void Sub::init_barometer(bool save)
{
    gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
    barometer.calibrate(save);
    gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
}

// return barometric altitude in centimeters
void Sub::read_barometer(void)
{
    barometer.update();
    if (should_log(MASK_LOG_IMU)) {
        Log_Write_Baro();
    }

    sensor_health.depth = barometer.healthy(depth_sensor_idx);
}

void Sub::init_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
    rangefinder.init();
    rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ);
    rangefinder_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_270);
#endif
}

// return rangefinder altitude in centimeters
void Sub::read_rangefinder(void)
{
#if RANGEFINDER_ENABLED == ENABLED
    rangefinder.update();

    rangefinder_state.alt_healthy = ((rangefinder.status_orient(ROTATION_PITCH_270) == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count_orient(ROTATION_PITCH_270) >= RANGEFINDER_HEALTH_MAX));

    int16_t temp_alt = rangefinder.distance_cm_orient(ROTATION_PITCH_270);

#if RANGEFINDER_TILT_CORRECTION == ENABLED
    // correct alt for angle of the rangefinder
    temp_alt = (float)temp_alt * MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z);
#endif

    rangefinder_state.alt_cm = temp_alt;

    // filter rangefinder for use by AC_WPNav
    uint32_t now = AP_HAL::millis();

    if (rangefinder_state.alt_healthy) {
        if (now - rangefinder_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS) {
            // reset filter if we haven't used it within the last second
            rangefinder_state.alt_cm_filt.reset(rangefinder_state.alt_cm);
        } else {
            rangefinder_state.alt_cm_filt.apply(rangefinder_state.alt_cm, 0.05f);
        }
        rangefinder_state.last_healthy_ms = now;
    }

    // send rangefinder altitude and health to waypoint navigation library
    wp_nav.set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get());

#else
    rangefinder_state.enabled = false;
    rangefinder_state.alt_healthy = false;
    rangefinder_state.alt_cm = 0;
#endif
}

// return true if rangefinder_alt can be used
bool Sub::rangefinder_alt_ok()
{
    return (rangefinder_state.enabled && rangefinder_state.alt_healthy);
}

/*
  update RPM sensors
 */
#if RPM_ENABLED == ENABLED
void Sub::rpm_update(void)
{
    rpm_sensor.update();
    if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) {
        if (should_log(MASK_LOG_RCIN)) {
            DataFlash.Log_Write_RPM(rpm_sensor);
        }
    }
}
#endif

// initialise compass
void Sub::init_compass()
{
    if (!compass.init() || !compass.read()) {
        // make sure we don't pass a broken compass to DCM
        hal.console->println("COMPASS INIT ERROR");
        Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE);
        return;
    }
    ahrs.set_compass(&compass);
}

// initialise optical flow sensor
#if OPTFLOW == ENABLED
void Sub::init_optflow()
{
    // exit immediately if not enabled
    if (!optflow.enabled()) {
        return;
    }

    // initialise optical flow sensor
    optflow.init();
}
#endif      // OPTFLOW == ENABLED

// called at 200hz
#if OPTFLOW == ENABLED
void Sub::update_optical_flow(void)
{
    static uint32_t last_of_update = 0;

    // exit immediately if not enabled
    if (!optflow.enabled()) {
        return;
    }

    // read from sensor
    optflow.update();

    // write to log and send to EKF if new data has arrived
    if (optflow.last_update() != last_of_update) {
        last_of_update = optflow.last_update();
        uint8_t flowQuality = optflow.quality();
        Vector2f flowRate = optflow.flowRate();
        Vector2f bodyRate = optflow.bodyRate();
        const Vector3f &posOffset = optflow.get_pos_offset();
        ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update, posOffset);
        if (g.log_bitmask & MASK_LOG_OPTFLOW) {
            Log_Write_Optflow();
        }
    }
}
#endif  // OPTFLOW == ENABLED

// read_battery - check battery voltage and current and invoke failsafe if necessary
// called at 10hz
void Sub::read_battery(void)
{
    battery.read();

    // update compass with current value
    if (battery.has_current()) {
        compass.set_current(battery.current_amps());
    }

    // update motors with voltage and current
    if (battery.get_type() != AP_BattMonitor::BattMonitor_TYPE_NONE) {
        motors.set_voltage(battery.voltage());
    }

    if (battery.has_current()) {
        motors.set_current(battery.current_amps());
    }

    failsafe_battery_check();

    // log battery info to the dataflash
    if (should_log(MASK_LOG_CURRENT)) {
        Log_Write_Current();
    }
}

void Sub::compass_cal_update()
{
    if (!hal.util->get_soft_armed()) {
        compass.compass_cal_update();
    }
}

void Sub::accel_cal_update()
{
    if (hal.util->get_soft_armed()) {
        return;
    }
    ins.acal_update();
    // check if new trim values, and set them
    float trim_roll, trim_pitch;
    if (ins.get_new_trim(trim_roll, trim_pitch)) {
        ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
    }
}

#if GRIPPER_ENABLED == ENABLED
// gripper update
void Sub::gripper_update()
{
    g2.gripper.update();
}
#endif