/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* multicopter simulator class */ #include "SIM_Multicopter.h" #include using namespace SITL; static const Motor quad_plus_motors[4] = { Motor(90, false, 1), Motor(270, false, 2), Motor(0, true, 3), Motor(180, true, 4) }; static const Motor quad_x_motors[4] = { Motor(45, false, 1), Motor(225, false, 2), Motor(315, true, 3), Motor(135, true, 4) }; static const Motor hexa_motors[6] = { Motor(60, false, 1), Motor(60, true, 7), Motor(180, true, 4), Motor(180, false, 8), Motor(-60, true, 2), Motor(-60, false, 3), }; static const Motor hexax_motors[6] = { Motor(30, false, 7), Motor(90, true, 1), Motor(150, false, 4), Motor(210, true, 8), Motor(270, false, 2), Motor(330, true, 3) }; static const Motor octa_motors[8] = { Motor(0, true, 1), Motor(180, true, 2), Motor(45, false, 3), Motor(135, false, 4), Motor(-45, false, 5), Motor(-135, false, 6), Motor(270, true, 7), Motor(90, true, 8) }; static const Motor octa_quad_motors[8] = { Motor( 45, false, 1), Motor( -45, true, 2), Motor(-135, false, 3), Motor( 135, true, 4), Motor( -45, false, 5), Motor( 45, true, 6), Motor( 135, false, 7), Motor(-135, true, 8) }; /* table of supported frame types */ static Frame supported_frames[] = { Frame("+", 4, quad_plus_motors), Frame("quad", 4, quad_plus_motors), Frame("copter", 4, quad_plus_motors), Frame("x", 4, quad_x_motors), Frame("hexa", 6, hexa_motors), Frame("hexax", 6, hexax_motors), Frame("octa", 8, octa_motors), Frame("octa-quad", 8, octa_quad_motors) }; void Frame::init(float _mass, float hover_throttle, float _terminal_velocity, float _terminal_rotation_rate) { mass = _mass; /* scaling from total motor power to Newtons. Allows the copter to hover against gravity when each motor is at hover_throttle */ thrust_scale = (mass * GRAVITY_MSS) / (num_motors * hover_throttle); terminal_velocity = _terminal_velocity; terminal_rotation_rate = _terminal_rotation_rate; } MultiCopter::MultiCopter(const char *home_str, const char *frame_str) : Aircraft(home_str, frame_str), frame(NULL) { for (uint8_t i=0; i < ARRAY_SIZE(supported_frames); i++) { if (strcasecmp(frame_str, supported_frames[i].name) == 0) { frame = &supported_frames[i]; } } if (frame == NULL) { printf("Frame '%s' not found", frame_str); exit(1); } frame->init(1.5, 0.51, 15, 4*radians(360)); frame_height = 0.1; } // calculate rotational and linear accelerations void Frame::calculate_forces(const Aircraft &aircraft, const Aircraft::sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { float motor_speed[num_motors]; for (uint8_t i=0; i 0) { // rotational air resistance const Vector3f &gyro = aircraft.get_gyro(); rot_accel.x -= gyro.x * radians(400.0) / terminal_rotation_rate; rot_accel.y -= gyro.y * radians(400.0) / terminal_rotation_rate; rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; } if (terminal_velocity > 0) { // air resistance Vector3f air_resistance = -aircraft.get_velocity_ef() * (GRAVITY_MSS/terminal_velocity); body_accel += aircraft.get_dcm().transposed() * air_resistance; } // add some noise const float gyro_noise = radians(0.1); const float accel_noise = 0.3; const float noise_scale = thrust / (thrust_scale * num_motors); rot_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * gyro_noise * noise_scale; body_accel += Vector3f(aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1), aircraft.rand_normal(0, 1)) * accel_noise * noise_scale; } // calculate rotational and linear accelerations void MultiCopter::calculate_forces(const struct sitl_input &input, Vector3f &rot_accel, Vector3f &body_accel) { frame->calculate_forces(*this, input, rot_accel, body_accel); } /* update the multicopter simulation by one time step */ void MultiCopter::update(const struct sitl_input &input) { // how much time has passed? Vector3f rot_accel; calculate_forces(input, rot_accel, accel_body); update_dynamics(rot_accel); if (on_ground(position)) { // zero roll/pitch, but keep yaw float r, p, y; dcm.to_euler(&r, &p, &y); dcm.from_euler(0, 0, y); position.z = -(ground_level + frame_height - home.alt*0.01f); } // update lat/lon/altitude update_position(); }