/* SITL handling This simulates a optical flow sensor Andrew Tridgell November 2011 */ #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include "AP_HAL_AVR_SITL.h" using namespace AVR_SITL; extern const AP_HAL::HAL& hal; #include #include #include #include #include /* update the optical flow with new data */ void SITL_State::_update_flow(void) { double p, q, r; Vector3f gyro; if (!_optical_flow || !_terrain || !_sitl->flow_enable) { return; } // convert roll rates to body frame SITL::convert_body_frame(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.rollRate), radians(_sitl->state.pitchRate), radians(_sitl->state.yawRate), &p, &q, &r); gyro(p, q, r); OpticalFlow::OpticalFlow_state state; // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; struct Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; if (!_terrain->height_amsl(location, terrain_height_amsl)) { // no terrain height available return; } float height_agl = _sitl->state.altitude - terrain_height_amsl; // NED velocity vector in m/s Vector3f velocity(_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD); // a rotation matrix following DCM conventions Matrix3f rotmat; rotmat.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.yawDeg)); state.device_id = 1; state.surface_quality = 0; // rubbish calculation for Paul to fill in state.flowRate = Vector2f(gyro.x, gyro.y) * height_agl * velocity.length(); state.bodyRate = Vector2f(gyro.x, gyro.y) * height_agl; _optical_flow->setHIL(state); } #endif