/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Flymaple port by Mike McCauley */ // Interface to the Flymaple sensors: // ITG3205 Gyroscope // ADXL345 Accelerometer #include #if CONFIG_HAL_BOARD == HAL_BOARD_FLYMAPLE #include "AP_InertialSensor_Flymaple.h" const extern AP_HAL::HAL& hal; Vector3f AP_InertialSensor_Flymaple::_accel_sum; uint32_t AP_InertialSensor_Flymaple::_accel_sum_count; Vector3f AP_InertialSensor_Flymaple::_gyro_sum; uint32_t AP_InertialSensor_Flymaple::_gyro_sum_count; volatile bool AP_InertialSensor_Flymaple::_in_accumulate; uint64_t AP_InertialSensor_Flymaple::_last_accel_timestamp; uint64_t AP_InertialSensor_Flymaple::_last_gyro_timestamp; int AP_InertialSensor_Flymaple::_accel_fd; int AP_InertialSensor_Flymaple::_gyro_fd; /////// /// Accelerometer ADXL345 definitions #define FLYMAPLE_ACCELEROMETER_ADDRESS 0x53 #define FLYMAPLE_ACCELEROMETER_XL345_DEVID 0xe5 #define FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE 0x2c #define FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID 0x00 #define FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0 0x32 #define FLYMAPLE_ACCELEROMETER_GRAVITY 248 /// Gyro ITG3205 definitions #define FLYMAPLE_GYRO_ADDRESS 0x68 #define FLYMAPLE_GYRO_PWR_MGM 0x3e #define FLYMAPLE_GYRO_DLPF_FS 0x16 #define FLYMAPLE_GYRO_INT_CFG 0x17 #define FLYMAPLE_GYRO_SMPLRT_DIV 0x15 #define FLYMAPLE_GYRO_GYROX_H 0x1d uint16_t AP_InertialSensor_Flymaple::_init_sensor( Sample_rate sample_rate ) { switch (sample_rate) { case RATE_50HZ: _sample_divider = 4; _default_filter_hz = 10; break; case RATE_100HZ: _sample_divider = 2; _default_filter_hz = 20; break; case RATE_200HZ: default: _sample_divider = 1; _default_filter_hz = 20; break; } // Init the accelerometer uint8_t data; hal.i2c->readRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DEVID, &data); if (data != FLYMAPLE_ACCELEROMETER_XL345_DEVID) hal.scheduler->panic(PSTR("AP_InertialSensor_Flymaple: could not find ADXL345 accelerometer sensor")); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); hal.scheduler->delay(5); hal.i2c->writeRegister(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_BW_RATE, 0x09); hal.scheduler->delay(5); /// Init the Gyro hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_PWR_MGM, 0x00); hal.scheduler->delay(1); hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_SMPLRT_DIV, 0x07); hal.scheduler->delay(1); hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_DLPF_FS,0x1e); hal.scheduler->delay(1); hal.i2c->writeRegister(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_INT_CFG, 0x00); hal.scheduler->delay(1); return AP_PRODUCT_ID_FLYMAPLE; } /* set the filter frequency */ void AP_InertialSensor_Flymaple::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) { filter_hz = _default_filter_hz; } /// TODO ... } /*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ bool AP_InertialSensor_Flymaple::update(void) { while (num_samples_available() == 0) { hal.scheduler->delay(1); } Vector3f accel_scale = _accel_scale.get(); hal.scheduler->suspend_timer_procs(); // base the time on the gyro timestamp, as that is what is // multiplied by time to integrate in DCM _delta_time = (_last_gyro_timestamp - _last_update_usec) * 1.0e-6f; _last_update_usec = _last_gyro_timestamp; _accel = _accel_sum / _accel_sum_count; _accel_sum.zero(); _accel_sum_count = 0; _gyro = _gyro_sum / _gyro_sum_count; _gyro_sum.zero(); _gyro_sum_count = 0; hal.scheduler->resume_timer_procs(); // add offsets and rotation _accel.rotate(_board_orientation); _accel.x *= accel_scale.x; _accel.y *= accel_scale.y; _accel.z *= accel_scale.z; _accel -= _accel_offset; _gyro.rotate(_board_orientation); _gyro *= (1.0 / 14.375) * (3.1415926 / 180); // ITG3200 14.375 LSB degrees/sec with FS_SEL=3 _gyro -= _gyro_offset; #if 0 // whats this all about???? if (_last_filter_hz != _mpu6000_filter) { _set_filter_frequency(_mpu6000_filter); _last_filter_hz = _mpu6000_filter; } #endif return true; } float AP_InertialSensor_Flymaple::get_delta_time(void) { return _delta_time; } uint32_t AP_InertialSensor_Flymaple::get_last_sample_time_micros(void) { return _last_update_usec; } float AP_InertialSensor_Flymaple::get_gyro_drift_rate(void) { // 0.5 degrees/second/minute return ToRad(0.5/60); } void AP_InertialSensor_Flymaple::_accumulate(void) { if (_in_accumulate) { return; } _in_accumulate = true; // Read accelerometer uint8_t buffer[8]; if (hal.i2c->readRegisters(FLYMAPLE_ACCELEROMETER_ADDRESS, FLYMAPLE_ACCELEROMETER_ADXLREG_DATAX0, 8, buffer) == 0) { int16_t x = -((((int16_t)buffer[1]) << 8) | buffer[0]); // X axis int16_t y = (((int16_t)buffer[3]) << 8) | buffer[2]; // Y axis int16_t z = -((((int16_t)buffer[5]) << 8) | buffer[4]); // Z axis _accel_sum += Vector3f(x, y, z); _accel_sum_count++; _last_accel_timestamp = hal.scheduler->micros(); } // Read gyro if (hal.i2c->readRegisters(FLYMAPLE_GYRO_ADDRESS, FLYMAPLE_GYRO_GYROX_H, 6, buffer) == 0) { int16_t x = (((int16_t)buffer[0]) << 8) | buffer[1]; // X axis int16_t y = (((int16_t)buffer[2]) << 8) | buffer[3]; // Y axis int16_t z = -((((int16_t)buffer[4]) << 8) | buffer[5]); // Z axis _gyro_sum += Vector3f(x, y, z); _gyro_sum_count++; _last_gyro_timestamp = hal.scheduler->micros(); } _in_accumulate = false; } void AP_InertialSensor_Flymaple::_ins_timer(uint32_t now) { _accumulate(); } uint16_t AP_InertialSensor_Flymaple::num_samples_available(void) { _accumulate(); return min(_accel_sum_count, _gyro_sum_count) / _sample_divider; } #endif // CONFIG_HAL_BOARD