// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
//
/// @file LowPassFilter.h
/// @brief A class to implement a low pass filter without losing precision even for int types
/// the downside being that it's a little slower as it internally uses a float
/// and it consumes an extra 4 bytes of memory to hold the constant gain
#ifndef __LOW_PASS_FILTER_H__
#define __LOW_PASS_FILTER_H__
#include
#include "FilterClass.h"
// 1st parameter is the type of data being filtered.
template
class LowPassFilter : public Filter
{
public:
// constructor
LowPassFilter();
void set_cutoff_frequency(float time_step, float cutoff_freq);
float get_cutoff_frequency() { return _cutoff_hz; }
void set_time_constant(float time_step, float time_constant);
// apply - Add a new raw value to the filter, retrieve the filtered result
virtual T apply(T sample);
// get - returns latest filtered value from filter (equal to the value returned by latest call to apply method)
virtual T get() const { return (T)_base_value; }
// reset - clear the filter - next sample added will become the new base value
virtual void reset() {
_base_value_set = false;
};
// reset - clear the filter and provide the new base value
void reset( T new_base_value ) {
_base_value = new_base_value; _base_value_set = true;
};
private:
float _alpha; // gain value (like 0.02) applied to each new value
bool _base_value_set; // true if the base value has been set
float _base_value; // filter output
float _cutoff_hz; // cutoff frequency in hz
};
// Typedef for convenience (1st argument is the data type, 2nd is a larger datatype to handle overflows, 3rd is buffer size)
typedef LowPassFilter LowPassFilterInt8;
typedef LowPassFilter LowPassFilterUInt8;
typedef LowPassFilter LowPassFilterInt16;
typedef LowPassFilter LowPassFilterUInt16;
typedef LowPassFilter LowPassFilterInt32;
typedef LowPassFilter LowPassFilterUInt32;
typedef LowPassFilter LowPassFilterFloat;
// Constructor //////////////////////////////////////////////////////////////
template
LowPassFilter::LowPassFilter() :
Filter(),
_alpha(1),
_base_value_set(false)
{};
// F_Cut = 1; % Hz
//RC = 1/(2*pi*F_Cut);
//Alpha = Ts/(Ts + RC);
// Public Methods //////////////////////////////////////////////////////////////
template
void LowPassFilter::set_cutoff_frequency(float time_step, float cutoff_freq)
{
_cutoff_hz = cutoff_freq;
// avoid divide by zero and allow removing filtering
if (cutoff_freq <= 0.0f) {
_alpha = 1.0f;
return;
}
// calculate alpha
float rc = 1/(2*M_PI_F*cutoff_freq);
_alpha = time_step / (time_step + rc);
}
template
void LowPassFilter::set_time_constant(float time_step, float time_constant)
{
// avoid divide by zero
if ((time_constant <= 0.0f) || (time_step <= 0.0f)) {
_cutoff_hz = 0.0f;
_alpha = 1.0f;
return;
}
_cutoff_hz = 1/(2*M_PI_F*time_constant);
// calculate alpha
_alpha = time_step / (time_constant + time_step);
}
template
T LowPassFilter::apply(T sample)
{
// initailise _base_value if required
if( !_base_value_set ) {
_base_value = sample;
_base_value_set = true;
}
// do the filtering
//_base_value = _alpha * (float)sample + (1.0 - _alpha) * _base_value;
_base_value = _base_value + _alpha * ((float)sample - _base_value);
// return the value. Should be no need to check limits
return (T)_base_value;
}
#endif // __LOW_PASS_FILTER_H__