/* * location.cpp * Copyright (C) Andrew Tridgell 2011 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * this module deals with calculations involving struct Location */ #include <AP_HAL/AP_HAL.h> #include <stdlib.h> #include "AP_Math.h" #include "location.h" float longitude_scale(const struct Location &loc) { float scale = cosf(loc.lat * (1.0e-7f * DEG_TO_RAD)); return constrain_float(scale, 0.01f, 1.0f); } // return distance in meters between two locations float get_distance(const struct Location &loc1, const struct Location &loc2) { float dlat = (float)(loc2.lat - loc1.lat); float dlong = ((float)(loc2.lng - loc1.lng)) * longitude_scale(loc2); return norm(dlat, dlong) * LOCATION_SCALING_FACTOR; } // return distance in centimeters to between two locations uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2) { return get_distance(loc1, loc2) * 100; } // return horizontal distance between two positions in cm float get_horizontal_distance_cm(const Vector3f &origin, const Vector3f &destination) { return norm(destination.x-origin.x,destination.y-origin.y); } // return bearing in centi-degrees between two locations int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2) { int32_t off_x = loc2.lng - loc1.lng; int32_t off_y = (loc2.lat - loc1.lat) / longitude_scale(loc2); int32_t bearing = 9000 + atan2f(-off_y, off_x) * DEGX100; if (bearing < 0) bearing += 36000; return bearing; } // return bearing in centi-degrees between two positions float get_bearing_cd(const Vector3f &origin, const Vector3f &destination) { float bearing = atan2f(destination.y-origin.y, destination.x-origin.x) * DEGX100; if (bearing < 0) { bearing += 36000.0f; } return bearing; } // see if location is past a line perpendicular to // the line between point1 and point2. If point1 is // our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool location_passed_point(const struct Location &location, const struct Location &point1, const struct Location &point2) { return location_path_proportion(location, point1, point2) >= 1.0f; } /* return the proportion we are along the path from point1 to point2, along a line parallel to point1<->point2. This will be less than >1 if we have passed point2 */ float location_path_proportion(const struct Location &location, const struct Location &point1, const struct Location &point2) { Vector2f vec1 = location_diff(point1, point2); Vector2f vec2 = location_diff(point1, location); float dsquared = sq(vec1.x) + sq(vec1.y); if (dsquared < 0.001f) { // the two points are very close together return 1.0f; } return (vec1 * vec2) / dsquared; } /* * extrapolate latitude/longitude given bearing and distance * Note that this function is accurate to about 1mm at a distance of * 100m. This function has the advantage that it works in relative * positions, so it keeps the accuracy even when dealing with small * distances and floating point numbers */ void location_update(struct Location &loc, float bearing, float distance) { float ofs_north = cosf(radians(bearing))*distance; float ofs_east = sinf(radians(bearing))*distance; location_offset(loc, ofs_north, ofs_east); } /* * extrapolate latitude/longitude given distances north and east */ void location_offset(struct Location &loc, float ofs_north, float ofs_east) { if (!is_zero(ofs_north) || !is_zero(ofs_east)) { int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV; int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(loc); loc.lat += dlat; loc.lng += dlng; } } /* return the distance in meters in North/East plane as a N/E vector from loc1 to loc2 */ Vector2f location_diff(const struct Location &loc1, const struct Location &loc2) { return Vector2f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR, (loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1)); } /* return the distance in meters in North/East/Down plane as a N/E/D vector from loc1 to loc2 */ Vector3f location_3d_diff_NED(const struct Location &loc1, const struct Location &loc2) { return Vector3f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR, (loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1), (loc1.alt - loc2.alt) * 0.01f); } /* return true if lat and lng match. Ignores altitude and options */ bool locations_are_same(const struct Location &loc1, const struct Location &loc2) { return (loc1.lat == loc2.lat) && (loc1.lng == loc2.lng); } /* * convert invalid waypoint with useful data. return true if location changed */ bool location_sanitize(const struct Location &defaultLoc, struct Location &loc) { bool has_changed = false; // convert lat/lng=0 to mean current point if (loc.lat == 0 && loc.lng == 0) { loc.lat = defaultLoc.lat; loc.lng = defaultLoc.lng; has_changed = true; } // convert relative alt=0 to mean current alt if (loc.alt == 0 && loc.flags.relative_alt) { loc.flags.relative_alt = false; loc.alt = defaultLoc.alt; has_changed = true; } // limit lat/lng to appropriate ranges if (!check_latlng(loc)) { loc.lat = defaultLoc.lat; loc.lng = defaultLoc.lng; has_changed = true; } return has_changed; } /* print a int32_t lat/long in decimal degrees */ void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon) { int32_t dec_portion, frac_portion; int32_t abs_lat_or_lon = labs(lat_or_lon); // extract decimal portion (special handling of negative numbers to ensure we round towards zero) dec_portion = abs_lat_or_lon / 10000000UL; // extract fractional portion frac_portion = abs_lat_or_lon - dec_portion*10000000UL; // print output including the minus sign if( lat_or_lon < 0 ) { s->printf("-"); } s->printf("%ld.%07ld",(long)dec_portion,(long)frac_portion); } // return true when lat and lng are within range bool check_lat(float lat) { return fabsf(lat) <= 90; } bool check_lng(float lng) { return fabsf(lng) <= 180; } bool check_lat(int32_t lat) { return labs(lat) <= 90*1e7; } bool check_lng(int32_t lng) { return labs(lng) <= 180*1e7; } bool check_latlng(float lat, float lng) { return check_lat(lat) && check_lng(lng); } bool check_latlng(int32_t lat, int32_t lng) { return check_lat(lat) && check_lng(lng); } bool check_latlng(Location loc) { return check_lat(loc.lat) && check_lng(loc.lng); }