--[[ perform simple aerobatic manoeuvres in AUTO mode cmd = 1: axial rolls, arg1 = roll rate dps, arg2 = number of rolls cmd = 2: loops or 180deg return, arg1 = pitch rate dps, arg2 = number of loops, if zero do a 1/2 cuban8-like return cmd = 3: rolling circle, arg1 = radius, arg2 = number of rolls cmd = 4: knife edge at any angle, arg1 = roll angle to hold, arg2 = duration cmd = 5: pause, holding heading and alt to allow stabilization after a move, arg1 = duration in seconds ]]-- -- setup param block for aerobatics, reserving 30 params beginning with AERO_ local PARAM_TABLE_KEY = 70 local PARAM_TABLE_PREFIX = 'AEROM_' assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table') -- this control script uses AERO_TRICK_ID to report the selected trick number from the scripting_rc_selection rc channel assert(param:add_param(PARAM_TABLE_KEY, 1, 'HGT_P', 1), 'could not add param4') -- height P gain assert(param:add_param(PARAM_TABLE_KEY, 2, 'HGT_I', 2), 'could not add param5') -- height I gain assert(param:add_param(PARAM_TABLE_KEY, 3, 'HGT_KE_ADD', 20), 'could not add param6') --height knife-edge addition for pitch assert(param:add_param(PARAM_TABLE_KEY, 4, 'THR_PIT_FF', 80), 'could not add param67') --throttle FF from pitch assert(param:add_param(PARAM_TABLE_KEY, 5, 'SPD_P', 5), 'could not add param8') -- speed P gain assert(param:add_param(PARAM_TABLE_KEY, 6, 'SPD_I', 25), 'could not add param9') -- speed I gain function bind_param(name) local p = Parameter() assert(p:init(name), string.format('could not find %s parameter', name)) return p end function bind_add_param(name, idx, default_value) assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name)) return bind_param(PARAM_TABLE_PREFIX .. name) end local ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3) local ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 1) --local VEL_TC = bind_add_param('VEL_TC', 8, 3) local LOOP_RATE = 20 DO_JUMP = 177 k_throttle = 70 local HGT_P = bind_param("AEROM_HGT_P") -- height P gain local HGT_I = bind_param("AEROM_HGT_I") -- height I gain local HGT_KE_BIAS = bind_param("AEROM_HGT_KE_ADD") -- height knifeedge addition for pitch local THR_PIT_FF = bind_param("AEROM_THR_PIT_FF") -- throttle FF from pitch local SPD_P = bind_param("AEROM_SPD_P") -- speed P gain local SPD_I = bind_param("AEROM_SPD_I") -- speed I gain local TRIM_THROTTLE = bind_param("TRIM_THROTTLE") local TRIM_ARSPD_CM = bind_param("TRIM_ARSPD_CM") local RLL2SRV_TCONST = bind_param("RLL2SRV_TCONST") local PITCH_TCONST = bind_param("PTCH2SRV_TCONST") local last_roll_err = 0.0 local last_id = 0 local initial_yaw_deg = 0 local wp_yaw_deg = 0 local initial_height = 0 local repeat_count = 0 local running = false local roll_stage = 0 local MIN_SPEED = 0.1 local LOOKAHEAD = 1 -- constrain a value between limits function constrain(v, vmin, vmax) if v < vmin then v = vmin end if v > vmax then v = vmax end return v end -- roll angle error 180 wrap to cope with errors while in inverted segments function roll_angle_error_wrap(roll_angle_error) if math.abs(roll_angle_error) > 180 then if roll_angle_error > 0 then roll_angle_error = roll_angle_error - 360 else roll_angle_error= roll_angle_error +360 end end return roll_angle_error end --roll controller to keep wings level in earth frame. if arg is 0 then level is at only 0 deg, otherwise its at 180/-180 roll also for loops function earth_frame_wings_level(arg) local roll_deg = math.deg(ahrs:get_roll()) local roll_angle_error = 0.0 if (roll_deg > 90 or roll_deg < -90) and arg ~= 0 then roll_angle_error = 180 - roll_deg else roll_angle_error = - roll_deg end return roll_angle_error_wrap(roll_angle_error)/(RLL2SRV_TCONST:get()) end function wrap_360(angle) local res = math.fmod(angle, 360.0) if res < 0 then res = res + 360.0 end return res end function wrap_180(angle) local res = wrap_360(angle) if res > 180 then res = res - 360 end return res end function wrap_pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_180(angle_deg) return math.rad(angle_wrapped) end function wrap_2pi(angle) local angle_deg = math.deg(angle) local angle_wrapped = wrap_360(angle_deg) return math.rad(angle_wrapped) end function euler_rad_ef_to_bf(roll, pitch, yaw, ef_roll_rate, ef_pitch_rate, ef_yaw_rate) local sr = math.sin(roll) local cr = math.cos(roll) local sp = math.sin(pitch) local cp = math.cos(pitch) local sy = math.sin(yaw) local cy = math.cos(yaw) local bf_roll_rate = ef_roll_rate + -sp*ef_yaw_rate local bf_pitch_rate = cr*ef_pitch_rate + sr*cp*ef_yaw_rate local bf_yaw_rate = -sr*ef_pitch_rate + cr*cp*ef_yaw_rate return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate) end -- a PI controller implemented as a Lua object local function PI_controller(kP,kI,iMax) -- the new instance. You can put public variables inside this self -- declaration if you want to local self = {} -- private fields as locals local _kP = kP or 0.0 local _kI = kI or 0.0 local _kD = kD or 0.0 local _iMax = iMax local _last_t = nil local _I = 0 local _P = 0 local _total = 0 local _counter = 0 local _target = 0 local _current = 0 -- update the controller. function self.update(target, current) local now = millis():tofloat() * 0.001 if not _last_t then _last_t = now end local dt = now - _last_t _last_t = now local err = target - current _counter = _counter + 1 local P = _kP * err _I = _I + _kI * err * dt if _iMax then _I = constrain(_I, -_iMax, iMax) end local I = _I local ret = P + I _target = target _current = current _P = P _total = ret return ret end -- reset integrator to an initial value function self.reset(integrator) _I = integrator end function self.set_I(I) _kI = I end function self.set_P(P) _kP = P end function self.set_Imax(Imax) _iMax = Imax end -- log the controller internals function self.log(name, add_total) -- allow for an external addition to total logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total) end -- return the instance return self end local function speed_controller(kP_param,kI_param, kFF_roll_param, kFF_pitch_param, Imax) local self = {} local kFF_roll = kFF_roll_param local kFF_pitch = kFF_pitch_param local PI = PI_controller(kP_param:get(), kI_param:get(), Imax) function self.update(target) local current_speed = ahrs:get_velocity_NED():length() local throttle = PI.update(target, current_speed) throttle = throttle + math.sin(ahrs:get_pitch())*kFF_pitch:get() throttle = throttle + math.abs(math.sin(ahrs:get_roll()))*kFF_roll:get() return throttle end function self.reset() PI.reset(0) local temp_throttle = self.update(ahrs:get_velocity_NED():length()) local current_throttle = SRV_Channels:get_output_scaled(k_throttle) PI.reset(current_throttle-temp_throttle) end return self end local function height_controller(kP_param,kI_param,KnifeEdge_param,Imax) local self = {} local kP = kP_param local kI = kI_param local KnifeEdge = KnifeEdge_param local PI = PI_controller(kP:get(), kI:get(), Imax) function self.update(target) local target_pitch = PI.update(target, ahrs:get_position():alt()*0.01) local roll_rad = ahrs:get_roll() local ke_add = math.abs(math.sin(roll_rad)) * KnifeEdge:get() target_pitch = target_pitch + ke_add PI.log("HPI", ke_add) return target_pitch end function self.reset() PI.reset(math.max(math.deg(ahrs:get_pitch()), 3.0)) PI.set_P(kP:get()) PI.set_I(kI:get()) end return self end local height_PI = height_controller(HGT_P, HGT_I, HGT_KE_BIAS, 20.0) local speed_PI = speed_controller(SPD_P, SPD_I, HGT_KE_BIAS, THR_PIT_FF, 100.0) function euler_rate_ef_to_bf(rrate, prate, yrate, roll, pitch, yaw) local sr = math.sin(roll) local cr = math.cos(roll) local sp = math.sin(pitch) local cp = math.cos(pitch) local sy = math.sin(yaw) local cy = math.cos(yaw) local bf_roll_rate = rrate -sp*yrate local bf_pitch_rate = cr*prate + sr*cp*yrate local bf_yaw_rate = -sr*prate + cr*cp*yrate return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate) end -- a controller to target a zero pitch angle and zero heading change, used in a roll -- output is a body frame pitch rate, with convergence over time tconst in seconds function pitch_controller(target_pitch_deg, target_yaw_deg, tconst) local roll_deg = math.deg(ahrs:get_roll()) local pitch_deg = math.deg(ahrs:get_pitch()) local yaw_deg = math.deg(ahrs:get_yaw()) -- get earth frame pitch and yaw rates local ef_pitch_rate = (target_pitch_deg - pitch_deg) / tconst local ef_yaw_rate = wrap_180(target_yaw_deg - yaw_deg) / tconst local bf_pitch_rate = math.sin(math.rad(roll_deg)) * ef_yaw_rate + math.cos(math.rad(roll_deg)) * ef_pitch_rate local bf_yaw_rate = math.cos(math.rad(roll_deg)) * ef_yaw_rate - math.sin(math.rad(roll_deg)) * ef_pitch_rate return bf_pitch_rate, bf_yaw_rate end -- a controller for throttle to account for pitch function throttle_controller() local pitch_rad = ahrs:get_pitch() local thr_ff = THR_PIT_FF:get() local throttle = TRIM_THROTTLE:get() + math.sin(pitch_rad) * thr_ff return constrain(throttle, 0, 100.0) end -- recover entry altitude function recover_alt() local target_pitch = height_PI.update(initial_height) local pitch_rate, yaw_rate = pitch_controller(target_pitch, wp_yaw_deg, PITCH_TCONST:get()) return target_pitch, pitch_rate, yaw_rate end function get_wp_location(i) local m = mission:get_item(i) local loc = Location() loc:lat(m:x()) loc:lng(m:y()) loc:relative_alt(false) loc:terrain_alt(false) loc:origin_alt(false) loc:alt(math.floor(m:z()*100)) return loc end function resolve_jump(i) local m = mission:get_item(i) while m:command() == DO_JUMP do i = math.floor(m:param1()) m = mission:get_item(i) end return i end --------Trajectory definitions--------------------- function path_circle(t, radius, unused) t = t*math.pi*2 local vec = makeVector3f(math.sin(t), 1.0-math.cos(t), 0) return vec:scale(radius), 0.0 end function knife_edge_circle(t, radius, unused) t = t*math.pi*2 local vec = makeVector3f(math.sin(t), 1.0-math.cos(t), 0) return vec:scale(radius), math.pi/2 end function path_climbing_circle(t, radius, height) local angle = t*math.pi*2 local vec = makeVector3f(radius*math.sin(angle), radius*(1.0-math.cos(angle)), -math.sin(0.5*angle)*height) return vec, 0.0 end --TODO: fix this to have initial tangent 0 function path_figure_eight(t, radius) t = t*math.pi*2 local vec = makeVector3f(math.sin(t), math.sin(t)*math.cos(t), 0) return vec:scale(radius), 0.0 end function path_vertical_circle(t, radius, unused) t = t*math.pi*2 local vec = makeVector3f(math.sin(t), 0.0, -1.0 + math.cos(t)) return vec:scale(radius), 0.0 end function path_straight_roll(t, length, num_rolls) local vec = makeVector3f(t*length, 0.0, 0.0) return vec, t*num_rolls*2*math.pi end function path_rolling_circle(t, radius, num_rolls) --t = t*math.pi*2 local vec = Vector3f() if radius < 0.0 then vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0) else vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0) end return vec:scale(math.abs(radius)), t*num_rolls*2*math.pi end function path_banked_circle(t, radius, bank_angle) --t = t*math.pi*2 local vec = Vector3f() if radius < 0.0 then vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0) else vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0) end return vec:scale(math.abs(radius)), math.deg(bank_angle) end function test_height_control(t, length, unused) if t < 0.25 then return makeVector3f(t*length, 0.0, 0.0), 0.0 elseif t < 0.5 then return makeVector3f(t*length, 0.0, -10.0), 0.0 elseif t < 0.75 then return makeVector3f(t*length, 0.0, -20.0), 0.0 else return makeVector3f(t*length, 0.0, -30.0), 0.0 end end function test_lane_change(t, length, unused) if t < 0.25 then return makeVector3f(t*length, 0.0, 0.0), 0.0 elseif t < 0.5 then return makeVector3f(t*length, 10.0, 0.0), 0.0 elseif t < 0.75 then return makeVector3f(t*length, 20.0, 0.0), 0.0 else return makeVector3f(t*length, 30.0, 0.0), 0.0 end end function path_straight_roll(t, length, num_rolls) local vec = makeVector3f(t*length, 0.0, 0.0) return vec, t*num_rolls*2*math.pi end --todo: change y coordinate to z for vertical box --function aerobatic_box(t, l, w, r): function horizontal_aerobatic_box(t, arg1, arg2) --gcs:send_text(0, string.format("t val: %f", t)) local r = math.min(arg1, arg2)/3.0 local l = arg1 - 2*r local w = arg2 - 2*r local perim = 2*l + 2*w + 2*math.pi*r local pos if (t < 0.5*l/(perim)) then pos = makeVector3f(perim*t, 0.0, 0.0) elseif (t < (0.5*l + 0.5*math.pi*r)/perim) then pos = makeVector3f(0.5*l + r*math.sin((perim*t - 0.5*l)/r), r*(1 - math.cos((perim*t - 0.5*l)/r)), 0.0) elseif (t < (0.5*l + 0.5*math.pi*r + w)/perim) then pos = makeVector3f(0.5*l + r, r + (perim*t - (0.5*l + 0.5*math.pi*r)), 0.0) elseif(t < (0.5*l + math.pi*r + w)/perim) then pos = makeVector3f(0.5*l + r + r*(-1 + math.cos((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), r + w + r*(math.sin((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), 0.0) elseif(t < (1.5*l + math.pi*r + w)/perim) then pos = makeVector3f(0.5*l - (perim*t - (0.5*l + math.pi*r + w)), 2*r + w, 0.0) elseif(t < (1.5*l + 1.5*math.pi*r + w)/perim) then pos = makeVector3f(-0.5*l + r*(-math.sin((perim*t - (1.5*l + math.pi*r + w))/r)), 2*r + w + r*(-1 + math.cos((perim*t - (1.5*l + math.pi*r + w))/r)), 0.0) elseif(t < (1.5*l + 1.5*math.pi*r + 2*w)/perim) then pos = makeVector3f(-0.5*l -r, w + r - (perim*t - (1.5*l + 1.5*math.pi*r + w)), 0.0) elseif(t < (1.5*l + 2*math.pi*r + 2*w)/perim) then pos = makeVector3f(-0.5*l -r + r*(1 - math.cos((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), r + r*(-math.sin((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), 0.0) else pos = makeVector3f(-0.5*l + perim*t - (1.5*l + 2*math.pi*r + 2*w), 0.0, 0.0) end return pos, 0.0 end function vertical_aerobatic_box(t, arg1, arg2) --gcs:send_text(0, string.format("t val: %f", t)) local q = Quaternion() q:from_euler(-math.rad(90), 0, 0) local point, angle = horizontal_aerobatic_box(t, arg1, arg2) q:earth_to_body(point) return point, angle end --------------------------------------------------- function target_groundspeed() return ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01 end --Estimate the length of the path in metres function path_length(path_f, arg1, arg2) local dt = 0.01 local total = 0.0 for i = 0, math.floor(1.0/dt) do local t = i*dt local t2 = t + dt local v1 = path_f(t, arg1, arg2) local v2 = path_f(t2, arg1, arg2) local dv = v2-v1 total = total + dv:length() end return total end --args: -- path_f: path function returning position -- t: normalised [0, 1] time -- arg1, arg2: arguments for path function -- orientation: maneuver frame orientation --returns: requested position in maneuver frame function rotate_path(path_f, t, arg1, arg2, orientation, offset) point, angle = path_f(t, arg1, arg2) orientation:earth_to_body(point) --TODO: rotate angle? return point+offset, angle end --args: -- dt: sample time -- cutoff_freq: cutoff frequency for low pass filter, in Hz --returns: alpha value required to implement LP filter function calc_lowpass_alpha_dt(dt, cutoff_freq) if dt <= 0.0 or cutoff_freq <= 0.0 then return 1.0 end local rc = 1.0/(2.0*3.14159265*cutoff_freq) local drc = dt/(dt+rc) if drc < 0.0 then return 0.0 end if drc > 1.0 then return 1.0 end return drc end --Wrapper to construct a Vector3f{x, y, z} from (x, y, z) function makeVector3f(x, y, z) local vec = Vector3f() vec:x(x) vec:y(y) vec:z(z) return vec end --Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle --Note that the rotation will not be unique. function vectors_to_rotation(vector1, vector2) axis = vector1:cross(vector2) if axis:length() < 0.00001 then local vec = Vector3f() vec:x(1) return vec, 0 end axis:normalize() angle = vector1:angle(vector2) return axis, angle end --returns Quaternion function vectors_to_rotation_w_roll(vector1, vector2, roll) axis, angle = vectors_to_rotation(vector1, vector2) local vector_rotation = Quaternion() vector_rotation:from_axis_angle(axis, angle) local roll_rotation = Quaternion() roll_rotation:from_euler(roll, 0, 0) local total_rot = vector_rotation*roll_rotation return to_axis_and_angle(total_rot) end --Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2 --If vec1 and vec2 are already parallel, returns a zero vector and zero angle function vectors_to_angular_rate(vector1, vector2, time_constant) axis, angle = vectors_to_rotation(vector1, vector2) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll) axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll) angular_velocity = angle/time_constant return axis:scale(angular_velocity) end function to_axis_and_angle(quat) local axis_angle = Vector3f() quat:to_axis_angle(axis_angle) angle = axis_angle:length() if(angle < 0.00001) then return makeVector3f(1.0, 0.0, 0.0), 0.0 end return axis_angle:scale(1.0/angle), angle end function test_axis_and_angle() local quat = Quaternion() quat:q1(1.0) local axis, angle = to_axis_and_angle(quat) gcs:send_text(0, string.format("axis angle test: %f %f %f %f", axis:x(), axis:y(), axis:z(), angle)) local quat2 = Quaternion() quat2:q1(math.cos(math.pi/4)) quat2:q2(0) quat2:q3(0) quat2:q4(math.sin(math.pi/4)) local axis2, angle2 = to_axis_and_angle(quat2) gcs:send_text(0, string.format("axis angle test2: %f %f %f %f", axis2:x(), axis2:y(), axis2:z(), angle2)) local quat3 = Quaternion() quat3:q1(math.cos(math.pi/2)) quat3:q2(0) quat3:q3(math.sin(math.pi/2)) quat3:q4(0) local axis3, angle3 = to_axis_and_angle(quat3) gcs:send_text(0, string.format("axis angle test3: %f %f %f %f", axis3:x(), axis3:y(), axis3:z(), angle3)) end --Just used this to test the above function, can probably delete now. function test_angular_rate() local vector1 = makeVector3f(1.0, 0.0, 0.0) local vector2 = makeVector3f(1.0, 1.0, 0.0) local angular_rate = vectors_to_angular_rate(vector1, vector2, 1.0) gcs:send_text(0, string.format("angular rate: %.1f %.1f %.1f", math.deg(angular_rate:x()), math.deg(angular_rate:y()), math.deg(angular_rate:z()))) end --test_angular_rate() --test_axis_and_angle() -- function maneuver_to_body(vec) -- path_var.initial_maneuver_to_earth:earth_to_body(vec) -- vec = ahrs:earth_to_body(vec) -- return vec -- end --returns body frame angular rate as Vec3f -- function path_proportional_error_correction(current_pos_ef, target_pos_ef, forward_velocity, target_velocity_ef) -- if forward_velocity <= MIN_SPEED then -- return makeVector3f(0.0, 0.0, 0.0) -- end -- --time over which to correct position error -- local time_const_pos_to_vel = POS_TC:get() -- --time over which to achieve desired velocity -- local time_const_vel_to_acc = VEL_TC:get() -- local pos_err_ef = target_pos_ef - current_pos_ef -- local correction_vel_ef = pos_err_ef:scale(1.0/time_const_pos_to_vel) -- correction_vel_ef = correction_vel_ef:scale(forward_velocity) -- local curr_vel_ef = ahrs:get_velocity_NED() -- local vel_error_ef = correction_vel_ef - curr_vel_ef -- local acc_err_bf = ahrs:earth_to_body(vel_error_ef):scale(1.0/time_const_vel_to_acc) -- local ang_vel = makeVector3f(0, -acc_err_bf:z()/forward_velocity, acc_err_bf:y()/forward_velocity) -- return ang_vel -- end local path_var = {} path_var.count = 0 path_var.positions_ef = {} path_var.roll_angles_bf = {} path_var.initial_ori = Quaternion() path_var.initial_maneuver_to_earth = Quaternion() function do_path(path, initial_yaw_deg, arg1, arg2) local now = millis():tofloat() * 0.001 path_var.count = path_var.count + 1 local target_dt = 1.0/LOOP_RATE if not running then running = true path_var.length = path_length(path, arg1, arg2) path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0) local speed = target_groundspeed() --assuming constant velocity path_var.total_time = path_var.length/speed path_var.last_pos, last_angle = path(0.0, arg1, arg2) --position at t0 --deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg)) path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg)) path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin() local corrected_position_t0_ef, angle_t0 = rotate_path(path, LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos) local corrected_position_t1_ef, angle_t1 = rotate_path(path, 2*LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos) path_var.start_pos = ahrs:get_position() path_var.path_int = path_var.start_pos:copy() height_PI.reset() speed_PI.reset() --path_var.positions[-1] is not used in initial runthrough path_var.positions_ef[0] = corrected_position_t0_ef path_var.positions_ef[1] = corrected_position_t1_ef path_var.roll_angles_bf[0] = angle_t0 path_var.roll_angles_bf[1] = angle_t1 path_var.accumulated_orientation_rel_ef = path_var.initial_ori path_var.time_correction = 0.0 path_var.filtered_angular_velocity = Vector3f() path_var.start_time = now + target_dt path_var.last_time = now path_var.average_dt = target_dt path_var.scaled_dt = target_dt path_var.path_t = 0 path_var.target_speed = speed end --TODO: dt taken from actual loop rate or just desired loop rate? --local dt = now - path_var.last_time --local dt = target_dt local vel_length = ahrs:get_velocity_NED():length() local actual_dt = now - path_var.last_time path_var.average_dt = 0.98*path_var.average_dt + 0.02*actual_dt local scaled_dt = path_var.average_dt--*vel_length/path_var.target_speed path_var.scaled_dt = scaled_dt path_var.last_time = now path_var.path_t = path_var.path_t + scaled_dt/path_var.total_time --TODO: Fix this exit condition local t = path_var.path_t if t > 1.0 then --done vehicle:nav_script_time_done(last_id) return false end --where we aim to be on the path at this timestamp --rotate from maneuver frame to 'local' EF local next_target_pos_ef, next_target_angle = rotate_path(path, path_var.path_t + LOOKAHEAD*path_var.average_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos) next_target_pos_ef = next_target_pos_ef logger.write("TML", 't', 'f', path_var.path_t + LOOKAHEAD*path_var.average_dt/path_var.total_time) path_var.positions_ef[-1] = path_var.positions_ef[0]:copy() path_var.positions_ef[0] = path_var.positions_ef[1]:copy() path_var.positions_ef[1] = next_target_pos_ef:copy() --roll angle relative to maneuver position without rolling path_var.roll_angles_bf[-1] = path_var.roll_angles_bf[0] path_var.roll_angles_bf[0] = path_var.roll_angles_bf[1] path_var.roll_angles_bf[1] = next_target_angle local current_measured_pos_ef = ahrs:get_relative_position_NED_origin() -- local path_error = {} -- path_error[-1] = (current_measured_pos - path_var.positions[-1]):length() -- path_error[0] = (current_measured_pos - path_var.positions[0]):length() -- path_error[1] = (current_measured_pos - path_var.positions[1]):length() ----------------------------------------------------------------------------------------------------------------------------- --TODO: Get the "time correction" logic working -- local smallest_error_index = -1 -- for i = 0,1,1 -- do -- if(path_error[i] < path_error[smallest_error_index]) then -- smallest_error_index = i -- end -- end -- if(smallest_error_index == 1) then -- path_var.positions[-1] = path_var.positions[0] -- path_var.positions[0] = path_var.positions[1] -- path_var.positions[1] = rotate_path(path, t + 2*dt, arg1, arg2, path_var.initial_ori) -- end -- if(smallest_error_index == -1) then -- path_var.positions[1] = path_var.positions[0] -- path_var.positions[0] = path_var.positions[-1] -- path_var.positions[-1] = rotate_path(path, t - 2*dt, arg1, arg2, path_var.initial_ori) -- end -- path_var.time_correction = path_var.time_correction + smallest_error_index*target_dt ------------------------------------------------------------------------------------------------------------------------------ local position_error_ef = path_var.positions_ef[0]- current_measured_pos_ef local path_loc = path_var.start_pos:copy() path_loc:offset(path_var.positions_ef[0]:x() - path_var.initial_ef_pos:x(), path_var.positions_ef[0]:y() - path_var.initial_ef_pos:y()) path_loc:alt(path_loc:alt() - math.floor(path_var.positions_ef[0]:z()*100)) --logger.write("POSM",'x,y,z','fff',current_measured_pos_ef:x(),current_measured_pos_ef:y(),current_measured_pos_ef:z()) --logger.write("POSE",'x,y,z','fff',path_var.positions_ef[0]:x(),path_var.positions_ef[0]:y(),path_var.positions_ef[0]:z()) logger.write("PERR",'x,y,z,tc,Lat,Lng,Alt','ffffLLf',position_error_ef:x(),position_error_ef:y(),position_error_ef:z(), path_var.time_correction, path_loc:lat(), path_loc:lng(), path_loc:alt()*0.01) --velocity required to travel along trajectory local trajectory_velocity_ef = (path_var.positions_ef[1] - path_var.positions_ef[-1]):scale(0.5/path_var.scaled_dt) --derivative from -dt to dt for more accuracy local tangent1_ef = (path_var.positions_ef[0] - path_var.positions_ef[-1]) local tangent2_ef = (path_var.positions_ef[1] - path_var.positions_ef[0]) local path_rate_rads_ef = vectors_to_angular_rate(tangent1_ef, tangent2_ef, path_var.scaled_dt) local zero_roll_angle_delta = Quaternion() zero_roll_angle_delta:from_angular_velocity(path_rate_rads_ef, path_var.scaled_dt) path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef path_var.accumulated_orientation_rel_ef:normalize() --velocity to correct error local err_corr_tc = ERR_CORR_TC:get() --tested with 3.0 seconds local err_velocity_ef = (path_var.positions_ef[0] - current_measured_pos_ef):scale(1.0/err_corr_tc) local total_velocity_ef = trajectory_velocity_ef + err_velocity_ef local curr_vel_ef = ahrs:get_velocity_NED() local total_ang_vel_ef = vectors_to_angular_rate(curr_vel_ef, total_velocity_ef, 1.0) local total_ang_vel_bf = ahrs:earth_to_body(total_ang_vel_ef) local mf_axis = makeVector3f(1, 0, 0) path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis) local orientation_rel_mf_with_roll_angle = Quaternion() orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, path_var.roll_angles_bf[0]) orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef --logger.write("ACCO",'r,p,y', 'fff', orientation_rel_ef_with_roll_angle:get_euler_roll(), orientation_rel_ef_with_roll_angle:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_yaw()) --logger.write("ACCQ",'q1,q2,q3,q4', 'ffff', orientation_rel_ef_with_roll_angle:q1(),orientation_rel_ef_with_roll_angle:q2(),orientation_rel_ef_with_roll_angle:q3(),orientation_rel_ef_with_roll_angle:q4() ) logger.write("IORI",'r,p,y','fff',ahrs:get_roll(), ahrs:get_pitch(), ahrs:get_yaw()) local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse() roll_error:normalize() local err_axis_ef, err_angle = to_axis_and_angle(roll_error) local time_const_roll = ROLL_CORR_TC:get() local err_angle_rate_ef = err_axis_ef:scale(err_angle/time_const_roll) local err_angle_rate_bf = ahrs:earth_to_body(err_angle_rate_ef) local angular_velocity_bf = total_ang_vel_bf angular_velocity_bf:x(err_angle_rate_bf:x()) angular_velocity_bf = angular_velocity_bf:scale(math.deg(1)) --logger.write("CAV",'x,y,z','fff',angular_velocity_bf:x(),angular_velocity_bf:y(),angular_velocity_bf:z()) local target_speed = target_groundspeed()--TRIM_ARSPD_CM:get()*0.01 throttle = speed_PI.update(target_speed) throttle = constrain(throttle, 0, 100.0) vehicle:set_target_throttle_rate_rpy(throttle, angular_velocity_bf:x(), angular_velocity_bf:y(), angular_velocity_bf:z()) return true end command_table = {} command_table[1]={path_figure_eight, "Figure Eight"} command_table[2]={path_vertical_circle, "Loop"} command_table[3]={horizontal_aerobatic_box, "Horizontal Rectangle"} command_table[4]={path_climbing_circle, "Climbing Circle"} command_table[5]={vertical_aerobatic_box, "Vertical Box"} command_table[6]={path_banked_circle, "Banked Circle"} command_table[7]={path_straight_roll, "Axial Roll"} command_table[8]={path_rolling_circle, "Rolling Circle"} function update() id, cmd, arg1, arg2 = vehicle:nav_script_time() if id then if id ~= last_id then -- we've started a new command running = false last_id = id repeat_count = 0 initial_yaw_deg = math.deg(ahrs:get_yaw()) gcs:send_text(0, string.format("Starting %s!", command_table[cmd][2] )) initial_height = ahrs:get_position():alt()*0.01 -- work out yaw between previous WP and next WP local cnum = mission:get_current_nav_index() -- find previous nav waypoint local loc_prev = get_wp_location(cnum-1) local loc_next = get_wp_location(cnum+1) local i= cnum-1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i-1 loc_prev = get_wp_location(i) end -- find next nav waypoint i = cnum+1 while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do i = i+1 loc_next = get_wp_location(resolve_jump(i)) end wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next)) initial_yaw_deg = wp_yaw_deg end local done = not do_path(command_table[cmd][1], initial_yaw_deg, arg1, arg2) if done then gcs:send_text(0, string.format("Finishing %s!", command_table[cmd][2] )) running = false end else running = false end return update, 1000.0/LOOP_RATE end return update()