/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if AP_SCRIPTING_ENABLED #include #include "AP_MotorsMatrix_6DoF_Scripting.h" #include #include #include extern const AP_HAL::HAL& hal; void AP_MotorsMatrix_6DoF_Scripting::output_to_motors() { switch (_spool_state) { case SpoolState::SHUT_DOWN: case SpoolState::GROUND_IDLE: { // no output, cant spin up for ground idle because we don't know which way motors should be spining for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _actuator[i] = 0.0f; } } break; } case SpoolState::SPOOLING_UP: case SpoolState::THROTTLE_UNLIMITED: case SpoolState::SPOOLING_DOWN: // set motor output based on thrust requests for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { if (_reversible[i]) { // revesible motor can provide both positive and negative thrust, +- spin max, spin min does not apply if (is_positive(_thrust_rpyt_out[i])) { _actuator[i] = apply_thrust_curve_and_volt_scaling(_thrust_rpyt_out[i]) * _spin_max; } else if (is_negative(_thrust_rpyt_out[i])) { _actuator[i] = -apply_thrust_curve_and_volt_scaling(-_thrust_rpyt_out[i]) * _spin_max; } else { _actuator[i] = 0.0f; } } else { // motor can only provide trust in a single direction, spin min to spin max as 'normal' copter _actuator[i] = thrust_to_actuator(_thrust_rpyt_out[i]); } } } break; } // Send to each motor for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { SRV_Channels::set_output_scaled(SRV_Channels::get_motor_function(i), _actuator[i] * 4500); } } } // output_armed - sends commands to the motors void AP_MotorsMatrix_6DoF_Scripting::output_armed_stabilizing() { uint8_t i; // general purpose counter float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float forward_thrust; // forward thrust input value, +/- 1.0 float right_thrust; // right thrust input value, +/- 1.0 // note that the throttle, forwards and right inputs are not in bodyframe, they are in the frame of the 'normal' 4DoF copter were pretending to be // apply voltage and air pressure compensation const float compensation_gain = get_compensation_gain(); // compensation for battery voltage and altitude roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain; throttle_thrust = get_throttle() * compensation_gain; // scale horizontal thrust with throttle, this mimics a normal copter // so we don't break the lean angle proportional acceleration assumption made by the position controller forward_thrust = get_forward() * throttle_thrust; right_thrust = get_lateral() * throttle_thrust; // set throttle limit flags if (throttle_thrust <= 0) { throttle_thrust = 0; // we cant thrust down, the vehicle can do it, but it would break a lot of assumptions further up the control stack // 1G decent probably plenty anyway.... limit.throttle_lower = true; } if (throttle_thrust >= 1) { throttle_thrust = 1; limit.throttle_upper = true; } // rotate the thrust into bodyframe Matrix3f rot; Vector3f thrust_vec; rot.from_euler312(_roll_offset, _pitch_offset, 0.0f); /* upwards thrust, independent of orientation */ thrust_vec.x = 0.0f; thrust_vec.y = 0.0f; thrust_vec.z = throttle_thrust; thrust_vec = rot * thrust_vec; for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] = thrust_vec.x * _forward_factor[i]; _thrust_rpyt_out[i] += thrust_vec.y * _right_factor[i]; _thrust_rpyt_out[i] += thrust_vec.z * _throttle_factor[i]; if (fabsf(_thrust_rpyt_out[i]) >= 1) { // if we hit this the mixer is probably scaled incorrectly limit.throttle_upper = true; } _thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i],-1.0f,1.0f); } } /* rotations: roll, pitch and yaw */ float rpy_ratio = 1.0f; // scale factor, output will be scaled by this ratio so it can all fit evenly float thrust[AP_MOTORS_MAX_NUM_MOTORS]; for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { thrust[i] = roll_thrust * _roll_factor[i]; thrust[i] += pitch_thrust * _pitch_factor[i]; thrust[i] += yaw_thrust * _yaw_factor[i]; float total_thrust = _thrust_rpyt_out[i] + thrust[i]; // control input will be limited by motor range if (total_thrust > 1.0f) { rpy_ratio = MIN(rpy_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); } else if (total_thrust < -1.0f) { rpy_ratio = MIN(rpy_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); } } } // set limit flags if output is being scaled if (rpy_ratio < 1) { limit.roll = true; limit.pitch = true; limit.yaw = true; } // scale back rotations evenly so it will all fit for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * rpy_ratio,-1.0f,1.0f); } } /* forward and lateral, independent of orentaiton */ thrust_vec.x = forward_thrust; thrust_vec.y = right_thrust; thrust_vec.z = 0.0f; thrust_vec = rot * thrust_vec; float horz_ratio = 1.0f; for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { thrust[i] = thrust_vec.x * _forward_factor[i]; thrust[i] += thrust_vec.y * _right_factor[i]; thrust[i] += thrust_vec.z * _throttle_factor[i]; float total_thrust = _thrust_rpyt_out[i] + thrust[i]; // control input will be limited by motor range if (total_thrust > 1.0f) { horz_ratio = MIN(horz_ratio,(1.0f - _thrust_rpyt_out[i]) / thrust[i]); } else if (total_thrust < -1.0f) { horz_ratio = MIN(horz_ratio,(-1.0f -_thrust_rpyt_out[i]) / thrust[i]); } } } // scale back evenly so it will all fit for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { _thrust_rpyt_out[i] = constrain_float(_thrust_rpyt_out[i] + thrust[i] * horz_ratio,-1.0f,1.0f); } } /* apply deadzone to revesible motors, this stops motors from reversing direction too often re-use yaw headroom param for deadzone, constain to a max of 25% */ const float deadzone = constrain_float(_yaw_headroom.get() * 0.001f,0.0f,0.25f); for (i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i] && _reversible[i]) { if (is_negative(_thrust_rpyt_out[i])) { if ((_thrust_rpyt_out[i] > -deadzone) && is_positive(_last_thrust_out[i])) { _thrust_rpyt_out[i] = 0.0f; } else { _last_thrust_out[i] = _thrust_rpyt_out[i]; } } else if (is_positive(_thrust_rpyt_out[i])) { if ((_thrust_rpyt_out[i] < deadzone) && is_negative(_last_thrust_out[i])) { _thrust_rpyt_out[i] = 0.0f; } else { _last_thrust_out[i] = _thrust_rpyt_out[i]; } } } } } // sets the roll and pitch offset, this rotates the thrust vector in body frame // these are typically set such that the throttle thrust vector is earth frame up void AP_MotorsMatrix_6DoF_Scripting::set_roll_pitch(float roll_deg, float pitch_deg) { _roll_offset = radians(roll_deg); _pitch_offset = radians(pitch_deg); } // add_motor, take roll, pitch, yaw, throttle(up), forward, right factors along with a bool if the motor is reversible and the testing order, called from scripting void AP_MotorsMatrix_6DoF_Scripting::add_motor(int8_t motor_num, float roll_factor, float pitch_factor, float yaw_factor, float throttle_factor, float forward_factor, float right_factor, bool reversible, uint8_t testing_order) { if (initialised_ok()) { // don't allow matrix to be changed after init return; } // ensure valid motor number is provided if (motor_num >= 0 && motor_num < AP_MOTORS_MAX_NUM_MOTORS) { motor_enabled[motor_num] = true; _roll_factor[motor_num] = roll_factor; _pitch_factor[motor_num] = pitch_factor; _yaw_factor[motor_num] = yaw_factor; _throttle_factor[motor_num] = throttle_factor; _forward_factor[motor_num] = forward_factor; _right_factor[motor_num] = right_factor; // set order that motor appears in test _test_order[motor_num] = testing_order; // ensure valid motor number is provided SRV_Channel::Aux_servo_function_t function = SRV_Channels::get_motor_function(motor_num); SRV_Channels::set_aux_channel_default(function, motor_num); uint8_t chan; if (!SRV_Channels::find_channel(function, chan)) { gcs().send_text(MAV_SEVERITY_ERROR, "Motors: unable to setup motor %u", motor_num); return; } _reversible[motor_num] = reversible; if (_reversible[motor_num]) { // reversible, set to angle type hard code trim to 1500 SRV_Channels::set_angle(function, 4500); SRV_Channels::set_trim_to_pwm_for(function, 1500); } else { SRV_Channels::set_range(function, 4500); } SRV_Channels::set_output_min_max(function, get_pwm_output_min(), get_pwm_output_max()); } } bool AP_MotorsMatrix_6DoF_Scripting::init(uint8_t expected_num_motors) { uint8_t num_motors = 0; for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled[i]) { num_motors++; } } set_initialised_ok(expected_num_motors == num_motors); if (!initialised_ok()) { _mav_type = MAV_TYPE_GENERIC; return false; } switch (num_motors) { case 3: _mav_type = MAV_TYPE_TRICOPTER; break; case 4: _mav_type = MAV_TYPE_QUADROTOR; break; case 6: _mav_type = MAV_TYPE_HEXAROTOR; break; case 8: _mav_type = MAV_TYPE_OCTOROTOR; break; case 10: _mav_type = MAV_TYPE_DECAROTOR; break; case 12: _mav_type = MAV_TYPE_DODECAROTOR; break; default: _mav_type = MAV_TYPE_GENERIC; } return true; } // singleton instance AP_MotorsMatrix_6DoF_Scripting *AP_MotorsMatrix_6DoF_Scripting::_singleton; #endif // AP_SCRIPTING_ENABLED