/* SITL handling This simulates a optical flow sensor Andrew Tridgell November 2011 */ #include #include #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL #include "AP_HAL_AVR_SITL.h" using namespace AVR_SITL; extern const AP_HAL::HAL& hal; #include #include #include #include #include /* update the optical flow with new data */ void SITL_State::_update_flow(void) { double p, q, r; Vector3f gyro; if (!_optical_flow || !_terrain || !_sitl->flow_enable) { return; } // convert roll rates to body frame SITL::convert_body_frame(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate, &p, &q, &r); gyro(p, q, r); OpticalFlow::OpticalFlow_state state; // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; struct Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; if (!_terrain->height_amsl(location, terrain_height_amsl)) { // no terrain height available return; } float height_agl = _sitl->state.altitude - terrain_height_amsl; // NED velocity vector in m/s Vector3f velocity(_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD); // a rotation matrix following DCM conventions Matrix3f rotmat; rotmat.from_euler(radians(_sitl->state.rollDeg), radians(_sitl->state.pitchDeg), radians(_sitl->state.yawDeg)); state.device_id = 1; state.surface_quality = 51; // estimate range to centre of image float range; if (rotmat.c.z > 0.05f) { range = height_agl / rotmat.c.z; } else { range = 1e38f; } // Calculate relative velocity in sensor frame assuming no misalignment between sensor and vehicle body axes Vector3f relVelSensor = rotmat.mul_transpose(velocity); // Divide velocity by range and add body rates to get predicted sensed angular // optical rates relative to X and Y sensor axes assuming no misalignment or scale // factor error. Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface state.flowRate.x = -relVelSensor.y/range + gyro.x; state.flowRate.y = relVelSensor.x/range + gyro.y; // The flow sensors body rates are assumed to be the same as the vehicle body rates (ie no misalignment) // Note - these are instantaneous values. The sensor sums these values across the interval from the last // poll to provide a delta angle across the interface. state.bodyRate = Vector2f(gyro.x, gyro.y); _optical_flow->setHIL(state); } #endif