this mode gives manual control when the roll or pitch is within the
set limits (the same limits as FBW mode), and prevents the pilot from
flying beyond those limits, essentially a "attitude limited manual"
mode
* I mostly went through with grep and added an #include <AP_Param.h> below
every #include <AP_Common.h>. Not all of these example sketches might
strictly need AP_Param.
Updated ArduCopter, ArduPlane and example sketches in AP_InertialSensor, AP_IMU and AP_AHRS libraries because they no longer need to pass in cs_pin to the constructor
this drives the speed of the 50Hz loop by the number of samples
accumulated in the IMU. This should give much more consistent timing
in DCM.
Thanks to Randy for introducing this scheme in ArduCopter!
this fixes using GPS_PROTOCOL to specify a specific GPS with a GPS
that takes a few updates before it works (eg. needing baud rate
changes).
This makes it easier to use an APM1-1280 with more features enabled
With this change we average over 100 mag readings per compass.read()
call, which means we are reading the compass at over 1kHz instead of
10Hz. The noise reduction is huge.
this allows a user to setup the OBC failsafe system to forcibly crash
the plane (surfaces at limits, zero throttle) when the failsafe system
triggers. This is to allow APM to be used in the Outback Challenge. In
the OBC an external failsafe board also does this using the heartbeat
control pin, so this is an extra safety mechanism.
To prevent users accidentially triggering a crash, this code only
activates if FS_TERM_ACTION is set to to the magic value 42.
this allows you to select different altitude control algorithms. The
current choices are for the default (automatic based on if airspeed is
available), or to force a non-airspeed algorithm
The idea is to make it possible to use airspeed for some things (like
wind speed, speed scaling) but not for alt control