Commit Graph

112 Commits

Author SHA1 Message Date
Andrew Tridgell
82365f8670 AP_NavEKF2: save some memory in the position offsets in EKF2
we don't need to copy that vector3f for every sample. A uint8_t does
the job
2016-10-27 17:09:06 +11:00
priseborough
13ca62b1c7 AP_NavEKF2: Correct velocity and position outputs for IMU offset
This can improve position hold performance where it is not practical to have the IMU located at the centroid.
Although this enables the effect of IMU position offsets to be corrected, users will still need to be instructed to place the IMU as close to the vehicle c.g. as practical as correcting for large offsets makes the velocity estimates noisy.
2016-10-27 14:54:43 +11:00
priseborough
21dcf42c27 AP_NavEKF2: Add missing documentation 2016-10-27 14:54:43 +11:00
priseborough
8922861359 AP_NavEKF2: Correct optical flow data for sensor position offset
Correction requires the body rates averaged across the flow sensor sampling interval. This data has been added to the sensor buffer.
The body rate data from the flow sensor driver does not contain the Z component, so an equivalent value sampled from the navigation IMU has been used instead.
The variable omegaAcrossFlowTime has been moved out of the class and into the only function that uses it.
2016-10-27 14:54:43 +11:00
priseborough
064a106808 AP_NavEKF2: Get IMU accelerometer body position offset data 2016-10-27 14:54:42 +11:00
priseborough
397033b7c3 AP_NavEKF2: Add flow sensor body position offset to data buffer 2016-10-27 14:54:42 +11:00
priseborough
92c086b40e AP_NavEKF2: Add rangefinder body position offset to data buffer 2016-10-27 14:54:42 +11:00
priseborough
3148ad4623 AP_NavEKF2: Add GPS antenna position offset data to data buffer 2016-10-27 14:54:42 +11:00
priseborough
fd905c23e1 AP_NavEKF2: Add body position offset to optical flow interface 2016-10-27 14:54:42 +11:00
Mathieu OTHACEHE
152edf7189 Global: remove mode line from headers
Using a global .dir-locals.el file is a better alternative than
reincluding the same emacs header in every file of the project.
2016-10-24 09:42:01 -02:00
Andrew Tridgell
dd812cfc0c AP_NavEKF2: added getPrimaryCoreIMUIndex()
needed for correct AHRS gyro estimate
2016-09-05 12:53:53 +10:00
priseborough
e6f36f04db AP_NavEKF2: Enable automatic use of range finder height
The EK2_RNG_USE_HGT parameter sets the height (expressed as a percentage of the maximum range of the range finder as set by the RNGFND_MAX_CM parameter) below which the range finder will be used as the primary height source when the vehicle is moving slowly.

When using a height reference other than GPS, the height datum can drift due to air pressure changes if using baro, or due to terrain height changes if using range finder as the primary height source. To ensure that a consistent height datum is available when switching between altitude sources, the WGS-84 height estimate of the EKF's local positi norigin is updated using a
single state Bayes estimator,

If rngfinder or gps height data is lost whilst being used, there will be a fall-back to baro data.
2016-08-08 10:56:44 +09:00
priseborough
9a23152ee4 AP_NavEKF2: Fix bugs and consolidate aiding switch logic
Switching in and out of aiding modes was being performed in more than one place and was using two variables.
The reversion out of GPS mode due to prolonged loss of GPS was not working.
This consolidates the logic and ensures that PV_AidingMode is only changed by the setAidingMode function.
2016-07-19 12:16:50 +10:00
priseborough
230ba2700f AP_NavEKF2: fix documentation errors 2016-07-19 12:16:50 +10:00
priseborough
341d070db8 AP_NavEKF2: Separate filter status update and get functions
The filter status logic calculations were being repeated every time the get function was called.
The logic is now updated once per filter update step and a separate get function added
2016-07-19 12:16:49 +10:00
priseborough
b1717649b1 AP_NavEKF2: remove combined NED local position interface 2016-07-19 12:16:49 +10:00
priseborough
e374ec634d AP_NavEKF2: Add separate horizontal/vertical local position interfaces 2016-07-19 12:16:49 +10:00
priseborough
280395afa1 AP_NavEKF2: Don't declare ready to do aiding unless gyro bias is learned 2016-07-19 12:16:48 +10:00
priseborough
169cd6625d AP_NavEKF2: clean up output predictor 2016-07-19 12:16:48 +10:00
priseborough
aaab250f13 AP_NavEKF2: Don't start GPS aiding until gyro calibration has stabilised
If we start GPS aiding before the gyro bias variances have reduced, glitches on the GPS can cause attitude disturbances that degrade flight accuracy during early flight.
2016-07-19 12:16:48 +10:00
priseborough
51dbed2338 AP_NavEKF2: remember mag field states between flight on same power cycle
Remember the mag bias and earth field states learned during flight when the vehicle  lands.
This improves performance for vehicles that do multiple flight on one power cycle
2016-07-10 08:21:18 +10:00
priseborough
136df7cb5c AP_NavEKF2: reduce declination errors on start of 3-axis fusion
Reset co-variances for NE field states.
2016-07-10 08:21:18 +10:00
priseborough
55dee347e0 AP_NavEKF2: Fix bug in averaged filter delta time
Average EKF time delta was not being updated.
2016-07-09 15:57:36 +10:00
priseborough
927186339c AP_NavEKF2: Improved output predictor tracking
Implement a PI feedback controller for velocity and position state tracking
2016-07-09 15:57:35 +10:00
priseborough
14bb4f4574 AP_NavEKF2: Publish output observer tracking errors 2016-07-09 15:57:35 +10:00
priseborough
191c34612d AP_NavEKF2: Fix bug in use of corrected IMU data
IMU data was being corrected before being used by the co-variance prediction, whereas the delta angles and velocities in the derivation were supposed to be uncorrected.
This patch creates separate variable for the corrected data
2016-07-09 15:57:35 +10:00
Paul Riseborough
6523481c76 AP_NavEKF2: Improve tracking accuracy of output predictor
Automatically use the highest gain consistent with a 5% overshoot to minimise RMS tracking errors.
Provide an alternative correction method for the position and velocity states that allows the user to specify the time-constant. This can be used to fine tune the output observer for for platform specific sensor errors and control loop sensitivity estimation noise.
2016-06-28 14:20:12 +10:00
Paul Riseborough
dc6836988c AP_NavEKF2: Improve ground based magnetic anomaly protection for copter
The toilet bowling check during early flight has been removed. This check caused problems where bad compass calibration was the cause of the toilet bowling and resetting to the compass was a bad option. The handling of simultaneous failed mag and velocity innovations is already handled outside the EKF by the failsafe.
A check for yaw errors due to a ground based magnetic anomaly has been introduced.
The logic for in-flight yaw and magnetic field resets has been cleaned up and variable names improved.
2016-06-28 14:20:12 +10:00
Paul Riseborough
703f56908f AP_NavEKF2: Correct comment 2016-06-28 14:20:12 +10:00
Jonathan Challinger
ebae95d7f6 AP_NavEKF2: apply corrections to new inertial data when using for output prediction 2016-06-28 14:20:11 +10:00
Jonathan Challinger
2f709dfe86 AP_NavEKF2: improve inertial prediction 2016-06-28 14:20:11 +10:00
Paul Riseborough
24d8cc62e2 AP_NavEKF2: rework yaw and magnetic heading reset logic
Splits in-flight yaw alignment completed status into separate yaw and magnetic field flags.
Reduce the number of places where decisions to perform a yaw and field reset are made.
Don't perform a reset unless there is is data in the buffer
Don't use 3-axis fusion if the field states still need to be reset.
When starting 3-axis fusion request a reset if not previously performed.
Ensure magnetometer and GPs heading resets are alwasy perfomred with data at teh correct time horizon.
2016-05-31 16:12:53 +10:00
Andrew Tridgell
97e2203e70 AP_NavEKF2: don't do 3D mag fusion on 2nd EKF2 core
this reduces the risk that mag fusion errors will badly affect
attitude estimation.
2016-05-27 21:27:06 +10:00
Paul Riseborough
cdd09df9ac AP_NavEKF: Add function to zero attitude state co-variances
When changing the vehicle yaw angle, the correlation between the attitude errors and errors in other states is invalid so the corresponding co-variance terms need to be zeroed.
This needs to be done in more than one place.
2016-05-27 09:00:41 +10:00
Paul Riseborough
fe9ddfdfeb AP_NavEKF2: remove code that prevents attitude updates after mag reset
This code assumes a vehicle is close to level and will not work for all vehicle types. It will be replaced by a different method.
2016-05-27 09:00:40 +10:00
Paul Riseborough
7201f7d2fd AP_NavEKF2: fix comment 2016-05-21 15:13:52 +10:00
Paul Riseborough
64a8153b68 AP_NavEKF2: update function name
The primary purpose of this function is re-alignment
2016-05-21 15:13:52 +10:00
Paul Riseborough
65f63341d7 AP_NavEKF2: Improve numerical error protection in optical flow fusion
Abort fusion of data if variances will become negative and publish the fault
2016-05-21 15:13:51 +10:00
Paul Riseborough
6eb9d43507 AP_NavEKF2: add numerical error checking and isolation to mag decl fusion 2016-05-21 15:13:51 +10:00
Paul Riseborough
b325c5faeb AP_NavEKF2: add error checking and isolation to mag heading fusion 2016-05-21 15:13:51 +10:00
Paul Riseborough
71b589c89c AP_NavEKF2: extend fusion fault reporting coverage 2016-05-21 15:13:50 +10:00
Paul Riseborough
6be9eaa524 AP_NavEKF2: use receiver estimated accuracy
Adjust the GPS observation noise based on receiver accuracy output if available.
2016-05-21 15:13:50 +10:00
Ricardo de Almeida Gonzaga
64d14356b9 AP_NavEKF2: Fix typos 2016-05-13 19:20:06 -03:00
Jonathan Challinger
97112ccd44 AP_NavEKF2: check mag instance id when returning mag offsets 2016-04-21 09:51:41 +10:00
Jonathan Challinger
acfaafe276 AP_NavEKF2: detect changes to magnetometer offset parameters and reset states 2016-04-21 09:51:41 +10:00
Paul Riseborough
1ecc206eee AP_NavEKF2: Allow use in planes without a magnetometer
Implements the following techniques to enable planes to operate without magnetometers.

1) When on ground with mag use inhibited, a synthetic heading equal to current heading is fused to prevent uncontrolled covariance growth.
2) When transitioning to in-flight, the delta between inertial and GPS velocity vector is used to align the yaw.
3) The yaw gyro bias state variance is reset following an in-flight heading reset to enable the yaw gyro bias to be learned faster.
2016-04-15 08:31:47 +10:00
Lucas De Marchi
e40b87cd0e AP_NavEKF2: replace header guard with pragma once 2016-03-16 18:40:42 +11:00
Paul Riseborough
7d6b926749 AP_NavEKF2: Improved magnetic heading fusion
Use an Euler yaw heading that switches between a 321 and 312 rotation
sequence to avoid areas of singularity.  Using Euler yaw decouples the
observation from the roll and pitch states and prevents magnetic
disturbances from affecting roll and pitch via the magnetometer fusion
process.
2016-03-01 10:08:47 -03:00
Peter Barker
475a2040a1 AP_NavEKF2: avoid use of undefined #defines
Ensure EKF_DISABLE_INTERRUPTS is defined

Do not define MATH_CHECK_INDEXES, assume it is defined
2016-02-19 12:34:24 -02:00
Paul Riseborough
ddb7d92fc8 AP_NavEKF2: Fix timing jitter in airspeed fusion
The airspeed observation buffer was only being checked when new data arrived instead of every frame which introduced some timing jitter. The buffer is now checked every filer update step.
The duplication and inconsistent naming of booleans used to indicate availability f data has been fixed.
2015-11-26 09:22:03 +11:00