This is a good way of letting each implementation easily calculate vibration
and clipping: all they need to do is publish their sample rate and they don't
need to worry about the call for calculation.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
These changes are for enabling unified accelerometer vibration and clipping
calculation. For that, we need the values "rotated and corrected" before they
are filtered and the calculation must be called as soon as a new sample arrives
as it takes the sample rate into account.
Thus, move code that applies "corrections" to be executed as soon as accel data
arrive and call _publish_accel() passing rotate_and_correct parameter as false.
Also, do the same for gyro so we can keep it consistent.
Also fix bug in do-mount-control so that do-mount-control can switch mount into retract mode
Also removes ability to set which axis are stabilized through
ardupilotmega mount_configure message
It's possible to use the internal clock in PCA96895 if we account for
the drift it contains. This is a bit different from solutions in other
projects like the Adafruit library and the PX4 firmware: instead of
applying a correction to the final frequency we apply the correction to
the clock since this is the source of the error.
With this fix we arrived to much better results across different lots of
sensors.
The Navio board continues to use the external clock and should have no
difference behavior.
This commit changes the way libraries headers are included in source files:
- If the header is in the same directory the source belongs to, so the
notation '#include ""' is used with the path relative to the directory
containing the source.
- If the header is outside the directory containing the source, then we use
the notation '#include <>' with the path relative to libraries folder.
Some of the advantages of such approach:
- Only one search path for libraries headers.
- OSs like Windows may have a better lookup time.
increase iterations to get good results from LM
better check for convergence, comparison with initial fitness is a better way to determine if convergence occurs, if fitness has not improved compared to initial fitness it means optimiser has failed.
If we have an error in the SPI or I2C transaction we should not change
the state. Otherwise we might read a temperature when the sensor is
reporting pressure and vice-versa.