../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp: In member function ‘void NavEKF2_core::InitialiseVariables()’:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:343:50: warning: ‘void* memset(void*, int, size_t)’ clearing an object of non-trivial type ‘struct NavEKF2_core::ext_nav_vel_elements’; use assignment or value-initialization instead [-Wclass-memaccess]
343 | memset(&extNavVelNew, 0, sizeof(extNavVelNew));
| ^
In file included from ../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:4:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.h:518:12: note: ‘struct NavEKF2_core::ext_nav_vel_elements’ declared here
518 | struct ext_nav_vel_elements {
| ^~~~~~~~~~~~~~~~~~~~
../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:344:58: warning: ‘void* memset(void*, int, size_t)’ clearing an object of non-trivial type ‘struct NavEKF2_core::ext_nav_vel_elements’; use assignment or value-initialization instead [-Wclass-memaccess]
344 | memset(&extNavVelDelayed, 0, sizeof(extNavVelDelayed));
| ^
In file included from ../../libraries/AP_NavEKF2/AP_NavEKF2_core.cpp:4:
../../libraries/AP_NavEKF2/AP_NavEKF2_core.h:518:12: note: ‘struct NavEKF2_core::ext_nav_vel_elements’ declared here
518 | struct ext_nav_vel_elements {
| ^~~~~~~~~~~~~~~~~~~~
Separate prediction and correction steps are required to provide an up to date yaw estimate using IMU prediction before it may be required by SelectMagFusion() whilst still doing the velocity update after GPS data haw been pulled from the buffer by SelectVelPosFusion()
Enables the yaw to be reset in flight to a value estimated from a specialised yaw estimator. This allows faster recovery if taking off with a bad magnetometer and also allows yaw alignment and GPS use to commence in-air when operating without any yaw sensing.
AP_NavEKF2: Add missing accesor functions for default airspeed
this moves intermediate variables from being per-core to being common
between cores. This saves memory on systems with more than one core by
avoiding allocating this memory on every core.
This is an alternative to #11717 which moves memory onto the stack. It
doesn't save as much memory as #11717, but avoids creating large stack
frames
this allows us to learn the gyro biases each lane would need if it had
to switch to another gyro due to a sensor failure. This prevents a
sudden change in gyro bias on IMU failure
this sets a limit on the difference between the earth field from the
WMM tables and the learned earth field inside the EKF. Setting it to
zero disables the feature. A positive value sets the limit in mGauss.