AP_Math: implement LU decomposition based matrix inverse
Replaces previous matlab generated code, which was giving imprecise results
This commit is contained in:
parent
a0c3cbffee
commit
fe62a049bd
@ -1,263 +1,230 @@
|
||||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
* matrix3.cpp
|
||||
* Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015
|
||||
*
|
||||
* This file is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This file is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#pragma GCC optimize("O3")
|
||||
|
||||
#include <AP_Math/AP_Math.h>
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
|
||||
#include <stdio.h>
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
/*
|
||||
* generic matrix inverse code
|
||||
* Does matrix multiplication of two regular/square matrices
|
||||
*
|
||||
* @param x, input nxn matrix
|
||||
* @param n, dimension of square matrix
|
||||
* @returns determinant of square matrix
|
||||
* Known Issues/ Possible Enhancements:
|
||||
* -more efficient method should be available, following is code generated from matlab
|
||||
* @param A, Matrix A
|
||||
* @param B, Matrix B
|
||||
* @param n, dimemsion of square matrices
|
||||
* @returns multiplied matrix i.e. A*B
|
||||
*/
|
||||
float detnxn(const float C[],const uint8_t n)
|
||||
|
||||
float* mat_mul(float *A, float *B, uint8_t n)
|
||||
{
|
||||
float f;
|
||||
float *A = new float[n*n];
|
||||
if( A == NULL) {
|
||||
return 0;
|
||||
}
|
||||
int8_t *ipiv = new int8_t[n];
|
||||
if(ipiv == NULL) {
|
||||
delete[] A;
|
||||
return 0;
|
||||
}
|
||||
int32_t i0;
|
||||
int32_t j;
|
||||
int32_t c;
|
||||
int32_t iy;
|
||||
int32_t ix;
|
||||
float smax;
|
||||
int32_t jy;
|
||||
float s;
|
||||
int32_t b_j;
|
||||
int32_t ijA;
|
||||
bool isodd;
|
||||
float* ret = new float[n*n];
|
||||
memset(ret,0.0f,n*n*sizeof(float));
|
||||
|
||||
memcpy(&A[0], &C[0], n*n * sizeof(float));
|
||||
for (i0 = 0; i0 < n; i0++) {
|
||||
ipiv[i0] = (int8_t)(1 + i0);
|
||||
}
|
||||
|
||||
for (j = 0; j < n-1; j++) {
|
||||
c = j * (n+1);
|
||||
iy = 0;
|
||||
ix = c;
|
||||
smax = fabs(A[c]);
|
||||
for (jy = 2; jy <= n - 1 - j; jy++) {
|
||||
ix++;
|
||||
s = fabs(A[ix]);
|
||||
if (s > smax) {
|
||||
iy = jy - 1;
|
||||
smax = s;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_zero(A[c + iy])) {
|
||||
if (iy != 0) {
|
||||
ipiv[j] = (int8_t)((j + iy) + 1);
|
||||
ix = j;
|
||||
iy += j;
|
||||
for (jy = 0; jy < n; jy++) {
|
||||
smax = A[ix];
|
||||
A[ix] = A[iy];
|
||||
A[iy] = smax;
|
||||
ix += n;
|
||||
iy += n;
|
||||
for(uint8_t i = 0; i < n; i++) {
|
||||
for(uint8_t j = 0; j < n; j++) {
|
||||
for(uint8_t k = 0;k < n; k++) {
|
||||
ret[i*n + j] += A[i*n + k] * B[k*n + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
i0 = (c - j) + n;
|
||||
for (iy = c + 1; iy + 1 <= i0; iy++) {
|
||||
A[iy] /= A[c];
|
||||
}
|
||||
}
|
||||
|
||||
iy = c;
|
||||
jy = c + n;
|
||||
for (b_j = 1; b_j <= n - 1 - j; b_j++) {
|
||||
smax = A[jy];
|
||||
if (!is_zero(A[jy])) {
|
||||
ix = c + 1;
|
||||
i0 = (iy - j) + (2*n);
|
||||
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) {
|
||||
A[ijA] += A[ix] * -smax;
|
||||
ix++;
|
||||
}
|
||||
}
|
||||
|
||||
jy += n;
|
||||
iy += n;
|
||||
}
|
||||
}
|
||||
|
||||
f = A[0];
|
||||
isodd = false;
|
||||
for (jy = 0; jy < (n-1); jy++) {
|
||||
f *= A[(jy + n * (1 + jy)) + 1];
|
||||
if (ipiv[jy] > 1 + jy) {
|
||||
isodd = !isodd;
|
||||
}
|
||||
}
|
||||
|
||||
if (isodd) {
|
||||
f = -f;
|
||||
}
|
||||
delete[] A;
|
||||
delete[] ipiv;
|
||||
return f;
|
||||
return ret;
|
||||
}
|
||||
/*
|
||||
* generic matrix inverse code
|
||||
*
|
||||
* @param x, input nxn matrix
|
||||
* @param y, Output inverted nxn matrix
|
||||
* @param n, dimension of square matrix
|
||||
* @returns false = matrix is Singular, true = matrix inversion successful
|
||||
* Known Issues/ Possible Enhancements:
|
||||
* -more efficient method should be available, following is code generated from matlab
|
||||
*/
|
||||
|
||||
bool inversenxn(const float x[], float y[], const uint8_t n)
|
||||
inline void swap(float &a, float &b)
|
||||
{
|
||||
if (is_zero(detnxn(x,n))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float *A = new float[n*n];
|
||||
if( A == NULL ){
|
||||
return false;
|
||||
}
|
||||
int32_t i0;
|
||||
int32_t *ipiv = new int32_t[n];
|
||||
if(ipiv == NULL) {
|
||||
delete[] A;
|
||||
return false;
|
||||
}
|
||||
int32_t j;
|
||||
int32_t c;
|
||||
int32_t pipk;
|
||||
int32_t ix;
|
||||
float smax;
|
||||
int32_t k;
|
||||
float s;
|
||||
int32_t jy;
|
||||
int32_t ijA;
|
||||
int32_t *p = new int32_t[n];
|
||||
if(p == NULL) {
|
||||
delete[] A;
|
||||
delete[] ipiv;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (i0 = 0; i0 < n*n; i0++) {
|
||||
A[i0] = x[i0];
|
||||
y[i0] = 0.0f;
|
||||
}
|
||||
|
||||
for (i0 = 0; i0 < n; i0++) {
|
||||
ipiv[i0] = (int32_t)(1 + i0);
|
||||
}
|
||||
|
||||
for (j = 0; j < (n-1); j++) {
|
||||
c = j * (n+1);
|
||||
pipk = 0;
|
||||
ix = c;
|
||||
smax = fabsf(A[c]);
|
||||
for (k = 2; k <= (n-1) - j; k++) {
|
||||
ix++;
|
||||
s = fabsf(A[ix]);
|
||||
if (s > smax) {
|
||||
pipk = k - 1;
|
||||
smax = s;
|
||||
}
|
||||
}
|
||||
|
||||
if (!is_zero(A[c + pipk])) {
|
||||
if (pipk != 0) {
|
||||
ipiv[j] = (int32_t)((j + pipk) + 1);
|
||||
ix = j;
|
||||
pipk += j;
|
||||
for (k = 0; k < n; k++) {
|
||||
smax = A[ix];
|
||||
A[ix] = A[pipk];
|
||||
A[pipk] = smax;
|
||||
ix += n;
|
||||
pipk += n;
|
||||
}
|
||||
}
|
||||
|
||||
i0 = (c - j) + n;
|
||||
for (jy = c + 1; jy + 1 <= i0; jy++) {
|
||||
A[jy] /= A[c];
|
||||
}
|
||||
}
|
||||
|
||||
pipk = c;
|
||||
jy = c + n;
|
||||
for (k = 1; k <= (n-1) - j; k++) {
|
||||
smax = A[jy];
|
||||
if (!is_zero(A[jy])) {
|
||||
ix = c + 1;
|
||||
i0 = (pipk - j) + (2*n);
|
||||
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) {
|
||||
A[ijA] += A[ix] * -smax;
|
||||
ix++;
|
||||
}
|
||||
}
|
||||
|
||||
jy += n;
|
||||
pipk += n;
|
||||
}
|
||||
}
|
||||
|
||||
for (i0 = 0; i0 < n; i0++) {
|
||||
p[i0] = (int32_t)(1 + i0);
|
||||
}
|
||||
|
||||
for (k = 0; k < (n-1); k++) {
|
||||
if (ipiv[k] > 1 + k) {
|
||||
pipk = p[ipiv[k] - 1];
|
||||
p[ipiv[k] - 1] = p[k];
|
||||
p[k] = (int32_t)pipk;
|
||||
}
|
||||
}
|
||||
|
||||
for (k = 0; k < n; k++) {
|
||||
y[k + n * (p[k] - 1)] = 1.0;
|
||||
for (j = k; j + 1 < (n+1); j++) {
|
||||
if (!is_zero(y[j + n * (p[k] - 1)])) {
|
||||
for (jy = j + 1; jy + 1 < (n+1); jy++) {
|
||||
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (j = 0; j < n; j++) {
|
||||
c = n * j;
|
||||
for (k = (n-1); k > -1; k += -1) {
|
||||
pipk = n * k;
|
||||
if (!is_zero(y[k + c])) {
|
||||
y[k + c] /= A[k + pipk];
|
||||
for (jy = 0; jy + 1 <= k; jy++) {
|
||||
y[jy + c] -= y[k + c] * A[jy + pipk];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
delete[] A;
|
||||
delete[] ipiv;
|
||||
delete[] p;
|
||||
return true;
|
||||
float c;
|
||||
c = a;
|
||||
a = b;
|
||||
b = c;
|
||||
}
|
||||
|
||||
/*
|
||||
* matrix inverse code only for 3x3 square matrix
|
||||
* calculates pivot matrix such that all the larger elements in the row are on diagonal
|
||||
*
|
||||
* @param A, input matrix matrix
|
||||
* @param pivot
|
||||
* @param n, dimenstion of square matrix
|
||||
* @returns false = matrix is Singular or non positive definite, true = matrix inversion successful
|
||||
*/
|
||||
|
||||
void mat_pivot(float* A, float* pivot, uint8_t n)
|
||||
{
|
||||
for(uint8_t i = 0;i<n;i++){
|
||||
for(uint8_t j=0;j<n;j++) {
|
||||
pivot[i*n+j] = (i==j);
|
||||
}
|
||||
}
|
||||
|
||||
for(uint8_t i = 0;i < n; i++) {
|
||||
uint8_t max_j = i;
|
||||
for(uint8_t j=i;j<n;j++){
|
||||
if(fabsf(A[j*n + i]) > fabsf(A[max_j*n + i])) {
|
||||
max_j = j;
|
||||
}
|
||||
}
|
||||
|
||||
if(max_j != i) {
|
||||
for(uint8_t k = 0; k < n; k++) {
|
||||
swap(pivot[i*n + k], pivot[max_j*n + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* calculates matrix inverse of Lower trangular matrix using forward substitution
|
||||
*
|
||||
* @param L, lower triangular matrix
|
||||
* @param out, Output inverted lower triangular matrix
|
||||
* @param n, dimension of matrix
|
||||
*/
|
||||
|
||||
void mat_forward_sub(float *L, float *out, uint8_t n)
|
||||
{
|
||||
// Forward substitution solve LY = I
|
||||
for(int i = 0; i < n; i++) {
|
||||
out[i*n + i] = 1/L[i*n + i];
|
||||
for (int j = i+1; j < n; j++) {
|
||||
for (int k = i; k < j; k++) {
|
||||
out[j*n + i] -= L[j*n + k] * out[k*n + i];
|
||||
}
|
||||
out[j*n + i] /= L[j*n + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* calculates matrix inverse of Upper trangular matrix using backward substitution
|
||||
*
|
||||
* @param U, upper triangular matrix
|
||||
* @param out, Output inverted upper triangular matrix
|
||||
* @param n, dimension of matrix
|
||||
*/
|
||||
|
||||
void mat_back_sub(float *U, float *out, uint8_t n)
|
||||
{
|
||||
// Backward Substitution solve UY = I
|
||||
for(int i = n-1; i >= 0; i--) {
|
||||
out[i*n + i] = 1/U[i*n + i];
|
||||
for (int j = i - 1; j >= 0; j--) {
|
||||
for (int k = i; k > j; k--) {
|
||||
out[j*n + i] -= U[j*n + k] * out[k*n + i];
|
||||
}
|
||||
out[j*n + i] /= U[j*n + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Decomposes square matrix into Lower and Upper triangular matrices such that
|
||||
* A*P = L*U, where P is the pivot matrix
|
||||
* ref: http://rosettacode.org/wiki/LU_decomposition
|
||||
* @param U, upper triangular matrix
|
||||
* @param out, Output inverted upper triangular matrix
|
||||
* @param n, dimension of matrix
|
||||
*/
|
||||
|
||||
void mat_LU_decompose(float* A, float* L, float* U, float *P, uint8_t n)
|
||||
{
|
||||
memset(L,0,n*n*sizeof(float));
|
||||
memset(U,0,n*n*sizeof(float));
|
||||
memset(P,0,n*n*sizeof(float));
|
||||
mat_pivot(A,P,n);
|
||||
|
||||
float *APrime = mat_mul(P,A,n);
|
||||
for(uint8_t i = 0; i < n; i++) {
|
||||
L[i*n + i] = 1;
|
||||
}
|
||||
for(uint8_t i = 0; i < n; i++) {
|
||||
for(uint8_t j = 0; j < n; j++) {
|
||||
if(j <= i) {
|
||||
U[j*n + i] = APrime[j*n + i];
|
||||
for(uint8_t k = 0; k < j; k++) {
|
||||
U[j*n + i] -= L[j*n + k] * U[k*n + i];
|
||||
}
|
||||
}
|
||||
if(j >= i) {
|
||||
L[j*n + i] = APrime[j*n + i];
|
||||
for(uint8_t k = 0; k < i; k++) {
|
||||
L[j*n + i] -= L[j*n + k] * U[k*n + i];
|
||||
}
|
||||
L[j*n + i] /= U[i*n + i];
|
||||
}
|
||||
}
|
||||
}
|
||||
free(APrime);
|
||||
}
|
||||
|
||||
/*
|
||||
* matrix inverse code for any square matrix using LU decomposition
|
||||
* inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix
|
||||
* ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf
|
||||
* @param m, input 4x4 matrix
|
||||
* @param inv, Output inverted 4x4 matrix
|
||||
* @param n, dimension of square matrix
|
||||
* @returns false = matrix is Singular, true = matrix inversion successful
|
||||
*/
|
||||
bool mat_inverse(float* A, float* inv, uint8_t n)
|
||||
{
|
||||
float *L, *U, *P;
|
||||
bool ret = true;
|
||||
L = new float[n*n];
|
||||
U = new float[n*n];
|
||||
P = new float[n*n];
|
||||
mat_LU_decompose(A,L,U,P,n);
|
||||
|
||||
float *L_inv = new float[n*n];
|
||||
float *U_inv = new float[n*n];
|
||||
|
||||
memset(L_inv,0,n*n*sizeof(float));
|
||||
mat_forward_sub(L,L_inv,n);
|
||||
|
||||
memset(U_inv,0,n*n*sizeof(float));
|
||||
mat_back_sub(U,U_inv,n);
|
||||
|
||||
// decomposed matrices no loger required
|
||||
free(L);
|
||||
free(U);
|
||||
|
||||
float *inv_unpivoted = mat_mul(U_inv,L_inv,n);
|
||||
float *inv_pivoted = mat_mul(inv_unpivoted, P, n);
|
||||
|
||||
//check sanity of results
|
||||
for(uint8_t i = 0; i < n; i++) {
|
||||
for(uint8_t j = 0; j < n; j++) {
|
||||
if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){
|
||||
ret = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
memcpy(inv,inv_pivoted,n*n*sizeof(float));
|
||||
|
||||
//free memory
|
||||
free(inv_pivoted);
|
||||
free(inv_unpivoted);
|
||||
free(P);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* fast matrix inverse code only for 3x3 square matrix
|
||||
*
|
||||
* @param m, input 4x4 matrix
|
||||
* @param invOut, Output inverted 4x4 matrix
|
||||
@ -280,7 +247,7 @@ bool inverse3x3(float m[], float invOut[])
|
||||
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
|
||||
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
|
||||
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
|
||||
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet;
|
||||
inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet;
|
||||
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
|
||||
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
|
||||
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
|
||||
@ -295,9 +262,8 @@ bool inverse3x3(float m[], float invOut[])
|
||||
}
|
||||
|
||||
/*
|
||||
* matrix inverse code only for 4x4 square matrix copied from
|
||||
* gluInvertMatrix implementation in
|
||||
* opengl for 4x4 matrices.
|
||||
* fast matrix inverse code only for 4x4 square matrix copied from
|
||||
* gluInvertMatrix implementation in opengl for 4x4 matrices.
|
||||
*
|
||||
* @param m, input 4x4 matrix
|
||||
* @param invOut, Output inverted 4x4 matrix
|
||||
@ -447,6 +413,6 @@ bool inverse(float x[], float y[], uint16_t dim)
|
||||
switch(dim){
|
||||
case 3: return inverse3x3(x,y);
|
||||
case 4: return inverse4x4(x,y);
|
||||
default: return inversenxn(x,y,dim);
|
||||
default: return mat_inverse(x,y,dim);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user