AP_Math: implement LU decomposition based matrix inverse

Replaces previous matlab generated code, which was giving imprecise results
This commit is contained in:
bugobliterator 2015-11-24 16:35:57 -08:00 committed by Jonathan Challinger
parent a0c3cbffee
commit fe62a049bd

View File

@ -1,263 +1,230 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* matrix3.cpp
* Copyright (C) Siddharth Bharat Purohit, 3DRobotics Inc. 2015
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma GCC optimize("O3")
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
/*
* generic matrix inverse code
* Does matrix multiplication of two regular/square matrices
*
* @param x, input nxn matrix
* @param n, dimension of square matrix
* @returns determinant of square matrix
* Known Issues/ Possible Enhancements:
* -more efficient method should be available, following is code generated from matlab
* @param A, Matrix A
* @param B, Matrix B
* @param n, dimemsion of square matrices
* @returns multiplied matrix i.e. A*B
*/
float detnxn(const float C[],const uint8_t n)
float* mat_mul(float *A, float *B, uint8_t n)
{
float f;
float *A = new float[n*n];
if( A == NULL) {
return 0;
}
int8_t *ipiv = new int8_t[n];
if(ipiv == NULL) {
delete[] A;
return 0;
}
int32_t i0;
int32_t j;
int32_t c;
int32_t iy;
int32_t ix;
float smax;
int32_t jy;
float s;
int32_t b_j;
int32_t ijA;
bool isodd;
float* ret = new float[n*n];
memset(ret,0.0f,n*n*sizeof(float));
memcpy(&A[0], &C[0], n*n * sizeof(float));
for (i0 = 0; i0 < n; i0++) {
ipiv[i0] = (int8_t)(1 + i0);
}
for (j = 0; j < n-1; j++) {
c = j * (n+1);
iy = 0;
ix = c;
smax = fabs(A[c]);
for (jy = 2; jy <= n - 1 - j; jy++) {
ix++;
s = fabs(A[ix]);
if (s > smax) {
iy = jy - 1;
smax = s;
}
}
if (!is_zero(A[c + iy])) {
if (iy != 0) {
ipiv[j] = (int8_t)((j + iy) + 1);
ix = j;
iy += j;
for (jy = 0; jy < n; jy++) {
smax = A[ix];
A[ix] = A[iy];
A[iy] = smax;
ix += n;
iy += n;
for(uint8_t i = 0; i < n; i++) {
for(uint8_t j = 0; j < n; j++) {
for(uint8_t k = 0;k < n; k++) {
ret[i*n + j] += A[i*n + k] * B[k*n + j];
}
}
}
i0 = (c - j) + n;
for (iy = c + 1; iy + 1 <= i0; iy++) {
A[iy] /= A[c];
}
}
iy = c;
jy = c + n;
for (b_j = 1; b_j <= n - 1 - j; b_j++) {
smax = A[jy];
if (!is_zero(A[jy])) {
ix = c + 1;
i0 = (iy - j) + (2*n);
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += n;
iy += n;
}
}
f = A[0];
isodd = false;
for (jy = 0; jy < (n-1); jy++) {
f *= A[(jy + n * (1 + jy)) + 1];
if (ipiv[jy] > 1 + jy) {
isodd = !isodd;
}
}
if (isodd) {
f = -f;
}
delete[] A;
delete[] ipiv;
return f;
return ret;
}
/*
* generic matrix inverse code
*
* @param x, input nxn matrix
* @param y, Output inverted nxn matrix
* @param n, dimension of square matrix
* @returns false = matrix is Singular, true = matrix inversion successful
* Known Issues/ Possible Enhancements:
* -more efficient method should be available, following is code generated from matlab
*/
bool inversenxn(const float x[], float y[], const uint8_t n)
inline void swap(float &a, float &b)
{
if (is_zero(detnxn(x,n))) {
return false;
}
float *A = new float[n*n];
if( A == NULL ){
return false;
}
int32_t i0;
int32_t *ipiv = new int32_t[n];
if(ipiv == NULL) {
delete[] A;
return false;
}
int32_t j;
int32_t c;
int32_t pipk;
int32_t ix;
float smax;
int32_t k;
float s;
int32_t jy;
int32_t ijA;
int32_t *p = new int32_t[n];
if(p == NULL) {
delete[] A;
delete[] ipiv;
return false;
}
for (i0 = 0; i0 < n*n; i0++) {
A[i0] = x[i0];
y[i0] = 0.0f;
}
for (i0 = 0; i0 < n; i0++) {
ipiv[i0] = (int32_t)(1 + i0);
}
for (j = 0; j < (n-1); j++) {
c = j * (n+1);
pipk = 0;
ix = c;
smax = fabsf(A[c]);
for (k = 2; k <= (n-1) - j; k++) {
ix++;
s = fabsf(A[ix]);
if (s > smax) {
pipk = k - 1;
smax = s;
}
}
if (!is_zero(A[c + pipk])) {
if (pipk != 0) {
ipiv[j] = (int32_t)((j + pipk) + 1);
ix = j;
pipk += j;
for (k = 0; k < n; k++) {
smax = A[ix];
A[ix] = A[pipk];
A[pipk] = smax;
ix += n;
pipk += n;
}
}
i0 = (c - j) + n;
for (jy = c + 1; jy + 1 <= i0; jy++) {
A[jy] /= A[c];
}
}
pipk = c;
jy = c + n;
for (k = 1; k <= (n-1) - j; k++) {
smax = A[jy];
if (!is_zero(A[jy])) {
ix = c + 1;
i0 = (pipk - j) + (2*n);
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) {
A[ijA] += A[ix] * -smax;
ix++;
}
}
jy += n;
pipk += n;
}
}
for (i0 = 0; i0 < n; i0++) {
p[i0] = (int32_t)(1 + i0);
}
for (k = 0; k < (n-1); k++) {
if (ipiv[k] > 1 + k) {
pipk = p[ipiv[k] - 1];
p[ipiv[k] - 1] = p[k];
p[k] = (int32_t)pipk;
}
}
for (k = 0; k < n; k++) {
y[k + n * (p[k] - 1)] = 1.0;
for (j = k; j + 1 < (n+1); j++) {
if (!is_zero(y[j + n * (p[k] - 1)])) {
for (jy = j + 1; jy + 1 < (n+1); jy++) {
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j];
}
}
}
}
for (j = 0; j < n; j++) {
c = n * j;
for (k = (n-1); k > -1; k += -1) {
pipk = n * k;
if (!is_zero(y[k + c])) {
y[k + c] /= A[k + pipk];
for (jy = 0; jy + 1 <= k; jy++) {
y[jy + c] -= y[k + c] * A[jy + pipk];
}
}
}
}
delete[] A;
delete[] ipiv;
delete[] p;
return true;
float c;
c = a;
a = b;
b = c;
}
/*
* matrix inverse code only for 3x3 square matrix
* calculates pivot matrix such that all the larger elements in the row are on diagonal
*
* @param A, input matrix matrix
* @param pivot
* @param n, dimenstion of square matrix
* @returns false = matrix is Singular or non positive definite, true = matrix inversion successful
*/
void mat_pivot(float* A, float* pivot, uint8_t n)
{
for(uint8_t i = 0;i<n;i++){
for(uint8_t j=0;j<n;j++) {
pivot[i*n+j] = (i==j);
}
}
for(uint8_t i = 0;i < n; i++) {
uint8_t max_j = i;
for(uint8_t j=i;j<n;j++){
if(fabsf(A[j*n + i]) > fabsf(A[max_j*n + i])) {
max_j = j;
}
}
if(max_j != i) {
for(uint8_t k = 0; k < n; k++) {
swap(pivot[i*n + k], pivot[max_j*n + k]);
}
}
}
}
/*
* calculates matrix inverse of Lower trangular matrix using forward substitution
*
* @param L, lower triangular matrix
* @param out, Output inverted lower triangular matrix
* @param n, dimension of matrix
*/
void mat_forward_sub(float *L, float *out, uint8_t n)
{
// Forward substitution solve LY = I
for(int i = 0; i < n; i++) {
out[i*n + i] = 1/L[i*n + i];
for (int j = i+1; j < n; j++) {
for (int k = i; k < j; k++) {
out[j*n + i] -= L[j*n + k] * out[k*n + i];
}
out[j*n + i] /= L[j*n + j];
}
}
}
/*
* calculates matrix inverse of Upper trangular matrix using backward substitution
*
* @param U, upper triangular matrix
* @param out, Output inverted upper triangular matrix
* @param n, dimension of matrix
*/
void mat_back_sub(float *U, float *out, uint8_t n)
{
// Backward Substitution solve UY = I
for(int i = n-1; i >= 0; i--) {
out[i*n + i] = 1/U[i*n + i];
for (int j = i - 1; j >= 0; j--) {
for (int k = i; k > j; k--) {
out[j*n + i] -= U[j*n + k] * out[k*n + i];
}
out[j*n + i] /= U[j*n + j];
}
}
}
/*
* Decomposes square matrix into Lower and Upper triangular matrices such that
* A*P = L*U, where P is the pivot matrix
* ref: http://rosettacode.org/wiki/LU_decomposition
* @param U, upper triangular matrix
* @param out, Output inverted upper triangular matrix
* @param n, dimension of matrix
*/
void mat_LU_decompose(float* A, float* L, float* U, float *P, uint8_t n)
{
memset(L,0,n*n*sizeof(float));
memset(U,0,n*n*sizeof(float));
memset(P,0,n*n*sizeof(float));
mat_pivot(A,P,n);
float *APrime = mat_mul(P,A,n);
for(uint8_t i = 0; i < n; i++) {
L[i*n + i] = 1;
}
for(uint8_t i = 0; i < n; i++) {
for(uint8_t j = 0; j < n; j++) {
if(j <= i) {
U[j*n + i] = APrime[j*n + i];
for(uint8_t k = 0; k < j; k++) {
U[j*n + i] -= L[j*n + k] * U[k*n + i];
}
}
if(j >= i) {
L[j*n + i] = APrime[j*n + i];
for(uint8_t k = 0; k < i; k++) {
L[j*n + i] -= L[j*n + k] * U[k*n + i];
}
L[j*n + i] /= U[i*n + i];
}
}
}
free(APrime);
}
/*
* matrix inverse code for any square matrix using LU decomposition
* inv = inv(U)*inv(L)*P, where L and U are triagular matrices and P the pivot matrix
* ref: http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf
* @param m, input 4x4 matrix
* @param inv, Output inverted 4x4 matrix
* @param n, dimension of square matrix
* @returns false = matrix is Singular, true = matrix inversion successful
*/
bool mat_inverse(float* A, float* inv, uint8_t n)
{
float *L, *U, *P;
bool ret = true;
L = new float[n*n];
U = new float[n*n];
P = new float[n*n];
mat_LU_decompose(A,L,U,P,n);
float *L_inv = new float[n*n];
float *U_inv = new float[n*n];
memset(L_inv,0,n*n*sizeof(float));
mat_forward_sub(L,L_inv,n);
memset(U_inv,0,n*n*sizeof(float));
mat_back_sub(U,U_inv,n);
// decomposed matrices no loger required
free(L);
free(U);
float *inv_unpivoted = mat_mul(U_inv,L_inv,n);
float *inv_pivoted = mat_mul(inv_unpivoted, P, n);
//check sanity of results
for(uint8_t i = 0; i < n; i++) {
for(uint8_t j = 0; j < n; j++) {
if(isnan(inv_pivoted[i*n+j]) || isinf(inv_pivoted[i*n+j])){
ret = false;
}
}
}
memcpy(inv,inv_pivoted,n*n*sizeof(float));
//free memory
free(inv_pivoted);
free(inv_unpivoted);
free(P);
return ret;
}
/*
* fast matrix inverse code only for 3x3 square matrix
*
* @param m, input 4x4 matrix
* @param invOut, Output inverted 4x4 matrix
@ -280,7 +247,7 @@ bool inverse3x3(float m[], float invOut[])
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet;
inv[3] = (m[5] * m[6] - m[3] * m[8]) * invdet;
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
@ -295,9 +262,8 @@ bool inverse3x3(float m[], float invOut[])
}
/*
* matrix inverse code only for 4x4 square matrix copied from
* gluInvertMatrix implementation in
* opengl for 4x4 matrices.
* fast matrix inverse code only for 4x4 square matrix copied from
* gluInvertMatrix implementation in opengl for 4x4 matrices.
*
* @param m, input 4x4 matrix
* @param invOut, Output inverted 4x4 matrix
@ -447,6 +413,6 @@ bool inverse(float x[], float y[], uint16_t dim)
switch(dim){
case 3: return inverse3x3(x,y);
case 4: return inverse4x4(x,y);
default: return inversenxn(x,y,dim);
default: return mat_inverse(x,y,dim);
}
}