AP_RAMTRON: improved driver robustness

- added retries on all operations
- detect errors with a CRC
- fixed detection of fujitsu devices
This commit is contained in:
Nick Exton 2019-10-04 14:59:10 +10:00 committed by Andrew Tridgell
parent 104dd7cd75
commit f9ec9c037a
2 changed files with 158 additions and 54 deletions

View File

@ -5,33 +5,39 @@
*/
#include "AP_RAMTRON.h"
#include <AP_Math/crc.h>
#include <AP_Math/AP_Math.h>
extern const AP_HAL::HAL &hal;
// register numbers
#define RAMTRON_RDID 0x9f
#define RAMTRON_READ 0x03
#define RAMTRON_RDSR 0x05
#define RAMTRON_WREN 0x06
#define RAMTRON_WRITE 0x02
static const uint8_t RAMTRON_RDID = 0x9f;
static const uint8_t RAMTRON_READ = 0x03;
static const uint8_t RAMTRON_WREN = 0x06;
static const uint8_t RAMTRON_WRITE = 0x02;
#define RAMTRON_RETRIES 10
#define RAMTRON_DELAY_MS 10
/*
list of supported devices. Thanks to NuttX ramtron driver
*/
const AP_RAMTRON::ramtron_id AP_RAMTRON::ramtron_ids[] = {
{ 0x21, 0x00, 16, 2}, // FM25V01
{ 0x21, 0x08, 16, 2}, // FM25V01A
{ 0x22, 0x00, 32, 2}, // FM25V02
{ 0x22, 0x08, 32, 2}, // FM25V02A
{ 0x22, 0x01, 32, 2}, // FM25VN02
{ 0x23, 0x00, 64, 2}, // FM25V05
{ 0x23, 0x01, 64, 2}, // FM25VN05
{ 0x24, 0x00, 128, 3}, // FM25V10
{ 0x24, 0x01, 128, 3}, // FM25VN10
{ 0x25, 0x08, 256, 3}, // FM25V20A
{ 0x26, 0x08, 512, 3}, // CY15B104Q
{ 0x27, 0x03, 128, 3}, // MB85RS1MT
{ 0x05, 0x09, 32, 3}, // B85RS256B
{ 0x21, 0x00, 16, 2, RDID_type::Cypress }, // FM25V01
{ 0x21, 0x08, 16, 2, RDID_type::Cypress }, // FM25V01A
{ 0x22, 0x00, 32, 2, RDID_type::Cypress }, // FM25V02
{ 0x22, 0x08, 32, 2, RDID_type::Cypress }, // FM25V02A
{ 0x22, 0x01, 32, 2, RDID_type::Cypress }, // FM25VN02
{ 0x23, 0x00, 64, 2, RDID_type::Cypress }, // FM25V05
{ 0x23, 0x01, 64, 2, RDID_type::Cypress }, // FM25VN05
{ 0x24, 0x00, 128, 3, RDID_type::Cypress }, // FM25V10
{ 0x24, 0x01, 128, 3, RDID_type::Cypress }, // FM25VN10
{ 0x25, 0x08, 256, 3, RDID_type::Cypress }, // FM25V20A
{ 0x26, 0x08, 512, 3, RDID_type::Cypress }, // CY15B104Q
{ 0x27, 0x03, 128, 3, RDID_type::Fujitsu }, // MB85RS1MT
{ 0x05, 0x09, 32, 2, RDID_type::Fujitsu }, // MB85RS256B
{ 0x24, 0x03, 16, 2, RDID_type::Fujitsu }, // MB85RS128TY
};
// initialise the driver
@ -39,36 +45,59 @@ bool AP_RAMTRON::init(void)
{
dev = hal.spi->get_device("ramtron");
if (!dev) {
hal.console->printf("No RAMTRON device\n");
return false;
}
WITH_SEMAPHORE(dev->get_semaphore());
struct rdid {
struct cypress_rdid {
uint8_t manufacturer[6];
uint8_t memory;
uint8_t id1;
uint8_t id2;
} rdid;
if (!dev->read_registers(RAMTRON_RDID, (uint8_t *)&rdid, sizeof(rdid))) {
};
struct fujitsu_rdid {
uint8_t manufacturer[2];
uint8_t id1;
uint8_t id2;
};
uint8_t rdid[sizeof(cypress_rdid)];
if (!dev->read_registers(RAMTRON_RDID, rdid, sizeof(rdid))) {
return false;
}
for (uint8_t i=0; i<ARRAY_SIZE(ramtron_ids); i++) {
if (ramtron_ids[i].id1 == rdid.id1 &&
ramtron_ids[i].id2 == rdid.id2) {
id = i;
return true;
for (uint8_t i = 0; i < ARRAY_SIZE(ramtron_ids); i++) {
if (ramtron_ids[i].rdid_type == RDID_type::Cypress) {
cypress_rdid const * const cypress = (cypress_rdid const * const)rdid;
if (ramtron_ids[i].id1 == cypress->id1 &&
ramtron_ids[i].id2 == cypress->id2) {
id = i;
break;
}
} else if (ramtron_ids[i].rdid_type == RDID_type::Fujitsu) {
fujitsu_rdid const * const fujitsu = (fujitsu_rdid const * const)rdid;
if (ramtron_ids[i].id1 == fujitsu->id1 &&
ramtron_ids[i].id2 == fujitsu->id2) {
id = i;
break;
}
}
}
hal.console->printf("Unknown RAMTRON manufacturer=%02x memory=%02x id1=%02x id2=%02x\n",
rdid.manufacturer[0], rdid.memory, rdid.id1, rdid.id2);
return false;
if (id == UINT8_MAX) {
hal.console->printf("Unknown RAMTRON device\n");
return false;
}
return true;
}
/*
send a command and offset
*/
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset) const
{
if (ramtron_ids[id].addrlen == 3) {
uint8_t b[4] = { cmd, uint8_t((offset>>16)&0xFF), uint8_t((offset>>8)&0xFF), uint8_t(offset&0xFF) };
@ -82,6 +111,14 @@ void AP_RAMTRON::send_offset(uint8_t cmd, uint32_t offset)
// read from device
bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
{
// Don't allow reads outside of the FRAM memory.
// NOTE: The FRAM devices will wrap back to address 0x0000 if they read past
// the end of their internal memory, so while we'll get data back, it won't
// be what we expect.
if ((size > get_size()) ||
(offset > (get_size() - size))) {
return false;
}
const uint8_t maxread = 128;
while (size > maxread) {
if (!read(offset, buf, maxread)) {
@ -92,36 +129,90 @@ bool AP_RAMTRON::read(uint32_t offset, uint8_t *buf, uint32_t size)
size -= maxread;
}
WITH_SEMAPHORE(dev->get_semaphore());
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
if (r != 0) {
hal.scheduler->delay(RAMTRON_DELAY_MS);
}
/*
transfer each block twice and compare with a crc. This is to
prevent transient errors from causing parameter corruption
*/
{
WITH_SEMAPHORE(dev->get_semaphore());
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, buf, size);
dev->set_chip_select(false);
}
dev->set_chip_select(true);
uint32_t crc1 = crc_crc32(0, buf, size);
send_offset(RAMTRON_READ, offset);
// get data
dev->transfer(nullptr, 0, buf, size);
{
WITH_SEMAPHORE(dev->get_semaphore());
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, buf, size);
dev->set_chip_select(false);
}
uint32_t crc2 = crc_crc32(0, buf, size);
dev->set_chip_select(false);
if (crc1 == crc2) {
// all good
return true;
}
}
return true;
return false;
}
// write to device
bool AP_RAMTRON::write(uint32_t offset, const uint8_t *buf, uint32_t size)
{
// Don't allow writes outside of the FRAM memory.
// NOTE: The FRAM devices will wrap back to address 0x0000 if they write past
// the end of their internal memory, so we could accidentally overwrite the
// wrong memory location.
if ((size > get_size()) ||
(offset > (get_size() - size))) {
return false;
}
WITH_SEMAPHORE(dev->get_semaphore());
// write enable
uint8_t r = RAMTRON_WREN;
dev->transfer(&r, 1, nullptr, 0);
dev->set_chip_select(true);
for (uint8_t r=0; r<RAMTRON_RETRIES; r++) {
if (r != 0) {
hal.scheduler->delay(RAMTRON_DELAY_MS);
}
send_offset(RAMTRON_WRITE, offset);
// we need to enable writes every time. The WREN bit is
// automatically reset on completion of the write call
dev->set_chip_select(true);
dev->transfer(&RAMTRON_WREN, 1, nullptr, 0);
dev->set_chip_select(false);
dev->transfer(buf, size, nullptr, 0);
dev->set_chip_select(true);
send_offset(RAMTRON_WRITE, offset);
dev->transfer(buf, size, nullptr, 0);
dev->set_chip_select(false);
dev->set_chip_select(false);
/*
verify first 32 bytes of every write using a crc
*/
uint8_t rbuf[32] {};
const uint8_t nverify = MIN(size, sizeof(rbuf));
uint32_t crc1 = crc_crc32(0, buf, nverify);
return true;
dev->set_chip_select(true);
send_offset(RAMTRON_READ, offset);
dev->transfer(nullptr, 0, rbuf, nverify);
dev->set_chip_select(false);
uint32_t crc2 = crc_crc32(0, rbuf, nverify);
if (crc1 == crc2) {
return true;
}
}
return false;
}

View File

@ -9,28 +9,41 @@
class AP_RAMTRON {
public:
// initialise the driver
// this will retry RAMTRON_RETRIES times until successful
bool init(void);
// get size in bytes
uint32_t get_size(void) const { return ramtron_ids[id].size_kbyte*1024UL; }
uint32_t get_size(void) const { return (id == UINT8_MAX) ? 0 : ramtron_ids[id].size_kbyte * 1024UL; }
// read from device
bool read(uint32_t offset, uint8_t *buf, uint32_t size);
// this will retry RAMTRON_RETRIES times until two successive reads return the same data
bool read(uint32_t offset, uint8_t * const buf, uint32_t size);
// write to device
bool write(uint32_t offset, const uint8_t *buf, uint32_t size);
bool write(uint32_t offset, uint8_t const * const buf, uint32_t size);
private:
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev;
enum class RDID_type :uint8_t {
Cypress,
Fujitsu,
};
struct ramtron_id {
uint8_t id1, id2;
uint8_t id1;
uint8_t id2;
uint16_t size_kbyte;
uint8_t addrlen;
RDID_type rdid_type;
};
static const struct ramtron_id ramtron_ids[];
uint8_t id;
uint8_t id = UINT8_MAX;
// send offset of transfer
void send_offset(uint8_t cmd, uint32_t offset);
// perform a single device initialisation
bool _init(void);
// perform a single device read
bool _read(uint32_t offset, uint8_t * const buf, uint32_t size);
void send_offset(uint8_t cmd, uint32_t offset) const;
};