AHRS: adapt the quaternion library to AHRS
This commit is contained in:
parent
8dcf82b433
commit
f8087d3c67
@ -1,5 +1,5 @@
|
||||
/*
|
||||
AP_Quaternion code, based on quaternion code from Jeb Madgwick
|
||||
AP_AHRS_Quaternion code, based on quaternion code from Jeb Madgwick
|
||||
|
||||
See http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
|
||||
|
||||
@ -13,24 +13,7 @@
|
||||
version.
|
||||
*/
|
||||
#include <FastSerial.h>
|
||||
#include <AP_Quaternion.h>
|
||||
|
||||
#define ToRad(x) (x*0.01745329252) // *pi/180
|
||||
#define ToDeg(x) (x*57.2957795131) // *180/pi
|
||||
|
||||
// this is the speed in cm/s above which we first get a yaw lock with
|
||||
// the GPS
|
||||
#define GPS_SPEED_MIN 300
|
||||
|
||||
// this is the speed in cm/s at which we stop using drift correction
|
||||
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
|
||||
#define GPS_SPEED_RESET 100
|
||||
|
||||
void
|
||||
AP_Quaternion::set_compass(Compass *compass)
|
||||
{
|
||||
_compass = compass;
|
||||
}
|
||||
#include <AP_AHRS.h>
|
||||
|
||||
// to keep the code as close to the original as possible, we use these
|
||||
// macros for quaternion access
|
||||
@ -40,7 +23,7 @@ AP_Quaternion::set_compass(Compass *compass)
|
||||
#define SEq_4 q.q4
|
||||
|
||||
// Function to compute one quaternion iteration without magnetometer
|
||||
void AP_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel)
|
||||
void AP_AHRS_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel)
|
||||
{
|
||||
// Local system variables
|
||||
float norm; // vector norm
|
||||
@ -134,7 +117,7 @@ void AP_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel)
|
||||
|
||||
|
||||
// Function to compute one quaternion iteration including magnetometer
|
||||
void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag)
|
||||
void AP_AHRS_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag)
|
||||
{
|
||||
// local system variables
|
||||
float norm; // vector norm
|
||||
@ -253,7 +236,7 @@ void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, V
|
||||
|
||||
// don't allow the drift rate to be exceeded. This prevents a
|
||||
// sudden drift change coming from a outage in the compass
|
||||
float max_change = gyroMeasDrift * deltat;
|
||||
float max_change = _gyro_drift_limit * deltat;
|
||||
drift_delta.x = constrain(drift_delta.x, -max_change, max_change);
|
||||
drift_delta.y = constrain(drift_delta.y, -max_change, max_change);
|
||||
drift_delta.z = constrain(drift_delta.z, -max_change, max_change);
|
||||
@ -308,161 +291,8 @@ void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, V
|
||||
}
|
||||
|
||||
|
||||
// Function to update our gyro_bias drift estimate using the accelerometer
|
||||
// and magnetometer. This is a cut-down version of update_MARG(), but
|
||||
// without the quaternion update.
|
||||
void AP_Quaternion::update_drift(float deltat, Vector3f &mag)
|
||||
{
|
||||
// local system variables
|
||||
float norm; // vector norm
|
||||
float f_4, f_5, f_6; // objective function elements
|
||||
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements
|
||||
J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; //
|
||||
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
|
||||
|
||||
// computed flux in the earth frame
|
||||
Vector3f flux;
|
||||
|
||||
// estimated direction of the gyroscope error (radians)
|
||||
Vector3f w_err;
|
||||
|
||||
// normalise the magnetometer measurement
|
||||
mag.normalize();
|
||||
if (mag.is_inf()) {
|
||||
// discard this data point
|
||||
renorm_range_count++;
|
||||
return;
|
||||
}
|
||||
|
||||
// auxiliary variables to avoid repeated calculations
|
||||
float twoSEq_1 = 2.0f * SEq_1;
|
||||
float twoSEq_2 = 2.0f * SEq_2;
|
||||
float twoSEq_3 = 2.0f * SEq_3;
|
||||
float twoSEq_4 = 2.0f * SEq_4;
|
||||
float twob_x = 2.0f * b_x;
|
||||
float twob_z = 2.0f * b_z;
|
||||
float twob_xSEq_1 = 2.0f * b_x * SEq_1;
|
||||
float twob_xSEq_2 = 2.0f * b_x * SEq_2;
|
||||
float twob_xSEq_3 = 2.0f * b_x * SEq_3;
|
||||
float twob_xSEq_4 = 2.0f * b_x * SEq_4;
|
||||
float twob_zSEq_1 = 2.0f * b_z * SEq_1;
|
||||
float twob_zSEq_2 = 2.0f * b_z * SEq_2;
|
||||
float twob_zSEq_3 = 2.0f * b_z * SEq_3;
|
||||
float twob_zSEq_4 = 2.0f * b_z * SEq_4;
|
||||
float SEq_1SEq_2;
|
||||
float SEq_1SEq_3 = SEq_1 * SEq_3;
|
||||
float SEq_1SEq_4;
|
||||
float SEq_2SEq_3;
|
||||
float SEq_2SEq_4 = SEq_2 * SEq_4;
|
||||
float SEq_3SEq_4;
|
||||
Vector3f twom = mag * 2.0;
|
||||
|
||||
// compute the objective function and Jacobian
|
||||
f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - mag.x;
|
||||
f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - mag.y;
|
||||
f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - mag.z;
|
||||
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
|
||||
J_12or23 = 2.0f * SEq_4;
|
||||
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
|
||||
J_14or21 = twoSEq_2;
|
||||
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
|
||||
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
|
||||
J_41 = twob_zSEq_3; // negated in matrix multiplication
|
||||
J_42 = twob_zSEq_4;
|
||||
J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication
|
||||
J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||||
J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||||
J_52 = twob_xSEq_3 + twob_zSEq_1;
|
||||
J_53 = twob_xSEq_2 + twob_zSEq_4;
|
||||
J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication
|
||||
J_61 = twob_xSEq_3;
|
||||
J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2;
|
||||
J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3;
|
||||
J_64 = twob_xSEq_2;
|
||||
|
||||
// compute the gradient (matrix multiplication)
|
||||
SEqHatDot_1 = - J_41 * f_4 - J_51 * f_5 + J_61 * f_6;
|
||||
SEqHatDot_2 = + J_42 * f_4 + J_52 * f_5 + J_62 * f_6;
|
||||
SEqHatDot_3 = - J_43 * f_4 + J_53 * f_5 + J_63 * f_6;
|
||||
SEqHatDot_4 = - J_44 * f_4 - J_54 * f_5 + J_64 * f_6;
|
||||
|
||||
// normalise the gradient to estimate direction of the gyroscope error
|
||||
norm = 1.0 / safe_sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4);
|
||||
if (isinf(norm)) {
|
||||
// discard this data point
|
||||
renorm_range_count++;
|
||||
return;
|
||||
}
|
||||
SEqHatDot_1 *= norm;
|
||||
SEqHatDot_2 *= norm;
|
||||
SEqHatDot_3 *= norm;
|
||||
SEqHatDot_4 *= norm;
|
||||
|
||||
// compute angular estimated direction of the gyroscope error
|
||||
w_err.x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3;
|
||||
w_err.y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2;
|
||||
w_err.z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1;
|
||||
|
||||
// keep track of the error rates
|
||||
_error_rp_sum += 0.5*(fabs(w_err.x) + fabs(w_err.y));
|
||||
_error_yaw_sum += fabs(w_err.z);
|
||||
_error_rp_count++;
|
||||
_error_yaw_count++;
|
||||
|
||||
// compute the gyroscope bias delta
|
||||
Vector3f drift_delta = w_err * (deltat * zeta);
|
||||
|
||||
// don't allow the drift rate to be exceeded. This prevents a
|
||||
// sudden drift change coming from a outage in the compass
|
||||
float max_change = gyroMeasDrift * deltat;
|
||||
drift_delta.x = constrain(drift_delta.x, -max_change, max_change);
|
||||
drift_delta.y = constrain(drift_delta.y, -max_change, max_change);
|
||||
drift_delta.z = constrain(drift_delta.z, -max_change, max_change);
|
||||
gyro_bias += drift_delta;
|
||||
|
||||
// compute then integrate the estimated quaternion rate
|
||||
SEq_1 -= (beta * SEqHatDot_1) * deltat;
|
||||
SEq_2 -= (beta * SEqHatDot_2) * deltat;
|
||||
SEq_3 -= (beta * SEqHatDot_3) * deltat;
|
||||
SEq_4 -= (beta * SEqHatDot_4) * deltat;
|
||||
|
||||
// normalise quaternion
|
||||
norm = 1.0/safe_sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
|
||||
if (isinf(norm)) {
|
||||
// our quaternion is bad! Reset based on roll/pitch/yaw
|
||||
// and hope for the best ...
|
||||
renorm_blowup_count++;
|
||||
_compass->null_offsets_disable();
|
||||
q.from_euler(roll, pitch, yaw);
|
||||
_compass->null_offsets_disable();
|
||||
return;
|
||||
}
|
||||
SEq_1 *= norm;
|
||||
SEq_2 *= norm;
|
||||
SEq_3 *= norm;
|
||||
SEq_4 *= norm;
|
||||
|
||||
// compute flux in the earth frame
|
||||
// recompute axulirary variables
|
||||
SEq_1SEq_2 = SEq_1 * SEq_2;
|
||||
SEq_1SEq_3 = SEq_1 * SEq_3;
|
||||
SEq_1SEq_4 = SEq_1 * SEq_4;
|
||||
SEq_3SEq_4 = SEq_3 * SEq_4;
|
||||
SEq_2SEq_3 = SEq_2 * SEq_3;
|
||||
SEq_2SEq_4 = SEq_2 * SEq_4;
|
||||
flux.x = twom.x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom.y * (SEq_2SEq_3 - SEq_1SEq_4) + twom.z * (SEq_2SEq_4 + SEq_1SEq_3);
|
||||
flux.y = twom.x * (SEq_2SEq_3 + SEq_1SEq_4) + twom.y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom.z * (SEq_3SEq_4 - SEq_1SEq_2);
|
||||
flux.z = twom.x * (SEq_2SEq_4 - SEq_1SEq_3) + twom.y * (SEq_3SEq_4 + SEq_1SEq_2) + twom.z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3);
|
||||
|
||||
// normalise the flux vector to have only components in the x and z
|
||||
b_x = sqrt((flux.x * flux.x) + (flux.y * flux.y));
|
||||
b_z = flux.z;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Function to compute one quaternion iteration
|
||||
void AP_Quaternion::update(void)
|
||||
void AP_AHRS_Quaternion::update(void)
|
||||
{
|
||||
Vector3f gyro, accel;
|
||||
float deltat;
|
||||
@ -518,42 +348,15 @@ void AP_Quaternion::update(void)
|
||||
accel.z += (gyro.y - gyro_bias.y) * veloc;
|
||||
}
|
||||
|
||||
#define SEPARATE_DRIFT 0
|
||||
#if SEPARATE_DRIFT
|
||||
/*
|
||||
The full Madgwick quaternion 'MARG' system assumes you get
|
||||
gyro, accel and magnetometer updates at the same rate. On
|
||||
APM we get them at very different rates, and re-calculating
|
||||
our drift due to the magnetometer in the fast loop is very
|
||||
wasteful of CPU.
|
||||
|
||||
Instead, we only update the gyro_bias vector when we get a
|
||||
new magnetometer point, and use the much simpler
|
||||
update_IMU() as the main quaternion update function.
|
||||
*/
|
||||
_gyro_sum += gyro;
|
||||
_accel_sum += accel;
|
||||
_sum_count++;
|
||||
|
||||
if (_compass != NULL && _compass->use_for_yaw() &&
|
||||
_compass->last_update != _compass_last_update &&
|
||||
_sum_count != 0) {
|
||||
// use new compass sample for drift correction
|
||||
float mag_deltat = 1.0e-6*(_compass->last_update - _compass_last_update);
|
||||
if (_compass != NULL && _compass->use_for_yaw()) {
|
||||
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, - _compass->mag_z);
|
||||
_sum_count = 0;
|
||||
update_drift(mag_deltat, mag);
|
||||
_compass_last_update = _compass->last_update;
|
||||
update_MARG(deltat, gyro, accel, mag);
|
||||
} else {
|
||||
// step the quaternion solution using just gyros and accels
|
||||
gyro -= gyro_bias;
|
||||
update_IMU(deltat, gyro, accel);
|
||||
}
|
||||
|
||||
// step the quaternion solution using just gyros and accels
|
||||
gyro -= gyro_bias;
|
||||
update_IMU(deltat, gyro, accel);
|
||||
#else
|
||||
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, - _compass->mag_z);
|
||||
update_MARG(deltat, gyro, accel, mag);
|
||||
#endif
|
||||
|
||||
#ifdef DESKTOP_BUILD
|
||||
if (q.is_nan()) {
|
||||
SITL_debug("QUAT NAN: deltat=%f roll=%f pitch=%f yaw=%f q=[%f %f %f %f] a=[%f %f %f] g=(%f %f %f)\n",
|
||||
@ -587,7 +390,7 @@ void AP_Quaternion::update(void)
|
||||
}
|
||||
|
||||
// average error in roll/pitch since last call
|
||||
float AP_Quaternion::get_error_rp(void)
|
||||
float AP_AHRS_Quaternion::get_error_rp(void)
|
||||
{
|
||||
float ret;
|
||||
if (_error_rp_count == 0) {
|
||||
@ -600,7 +403,7 @@ float AP_Quaternion::get_error_rp(void)
|
||||
}
|
||||
|
||||
// average error in yaw since last call
|
||||
float AP_Quaternion::get_error_yaw(void)
|
||||
float AP_AHRS_Quaternion::get_error_yaw(void)
|
||||
{
|
||||
float ret;
|
||||
if (_error_yaw_count == 0) {
|
||||
@ -611,3 +414,18 @@ float AP_Quaternion::get_error_yaw(void)
|
||||
_error_yaw_count = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// reset attitude system
|
||||
void AP_AHRS_Quaternion::reset(bool recover_eulers)
|
||||
{
|
||||
if (recover_eulers) {
|
||||
q.from_euler(roll, pitch, yaw);
|
||||
} else {
|
||||
q(1, 0, 0, 0);
|
||||
}
|
||||
gyro_bias.zero();
|
||||
|
||||
// reference direction of flux in earth frame
|
||||
b_x = 0;
|
||||
b_z = -1;
|
||||
}
|
||||
|
@ -13,66 +13,41 @@
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
class AP_Quaternion
|
||||
class AP_AHRS_Quaternion : public AP_AHRS
|
||||
{
|
||||
public:
|
||||
// Constructor
|
||||
AP_Quaternion(IMU *imu, GPS *&gps) :
|
||||
_imu(imu),
|
||||
_gps(gps)
|
||||
AP_AHRS_Quaternion(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps)
|
||||
{
|
||||
// reference direction of flux in earth frame
|
||||
b_x = 0;
|
||||
b_z = -1;
|
||||
|
||||
// limit the drift to the drift rate reported by the
|
||||
// sensor driver
|
||||
gyroMeasDrift = imu->get_gyro_drift_rate();
|
||||
|
||||
// scaled gyro drift limits
|
||||
beta = sqrt(3.0f / 4.0f) * gyroMeasError;
|
||||
zeta = sqrt(3.0f / 4.0f) * gyroMeasDrift;
|
||||
}
|
||||
zeta = sqrt(3.0f / 4.0f) * _gyro_drift_limit;
|
||||
|
||||
// Accessors
|
||||
void set_centripetal(bool b) {_centripetal = b;}
|
||||
bool get_centripetal(void) {return _centripetal;}
|
||||
void set_compass(Compass *compass);
|
||||
// reset attitude
|
||||
reset();
|
||||
}
|
||||
|
||||
// Methods
|
||||
void update(void);
|
||||
void reset(bool recover_eulers=false);
|
||||
|
||||
// Euler angles (radians)
|
||||
float roll;
|
||||
float pitch;
|
||||
float yaw;
|
||||
|
||||
// integer Euler angles (Degrees * 100)
|
||||
int32_t roll_sensor;
|
||||
int32_t pitch_sensor;
|
||||
int32_t yaw_sensor;
|
||||
|
||||
|
||||
// compatibility methods with DCM
|
||||
void update_DCM(void) { update(); }
|
||||
void update_DCM_fast(void) { update(); }
|
||||
// get corrected gyro vector
|
||||
Vector3f get_gyro(void) {
|
||||
// notice the sign reversals here
|
||||
return Vector3f(-_gyro_corrected.x, -_gyro_corrected.y, _gyro_corrected.z);
|
||||
}
|
||||
|
||||
Vector3f get_gyro_drift(void) {
|
||||
// notice the sign reversals here
|
||||
return Vector3f(-gyro_bias.x, -gyro_bias.y, gyro_bias.z);
|
||||
// notice the sign reversals here. The quaternion
|
||||
// system uses a -ve gyro bias, DCM uses a +ve
|
||||
return Vector3f(gyro_bias.x, gyro_bias.y, -gyro_bias.z);
|
||||
}
|
||||
float get_accel_weight(void) { return 0; }
|
||||
float get_renorm_val(void) { return 0; }
|
||||
float get_health(void) { return 0; }
|
||||
void matrix_reset(void) { }
|
||||
uint8_t gyro_sat_count;
|
||||
uint8_t renorm_range_count;
|
||||
uint8_t renorm_blowup_count;
|
||||
|
||||
float get_error_rp(void);
|
||||
float get_error_yaw(void);
|
||||
|
||||
// convert quaternion to a DCM matrix, used by compass
|
||||
// null offsets code
|
||||
Matrix3f get_dcm_matrix(void) {
|
||||
Matrix3f ret;
|
||||
q.rotation_matrix(ret);
|
||||
@ -82,31 +57,16 @@ public:
|
||||
private:
|
||||
void update_IMU(float deltat, Vector3f &gyro, Vector3f &accel);
|
||||
void update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag);
|
||||
void update_drift(float deltat, Vector3f &mag);
|
||||
|
||||
bool _have_initial_yaw;
|
||||
|
||||
// Methods
|
||||
void accel_adjust(void);
|
||||
|
||||
// members
|
||||
Compass * _compass;
|
||||
// time in microseconds of last compass update
|
||||
uint32_t _compass_last_update;
|
||||
|
||||
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
|
||||
// IMU under us without our noticing.
|
||||
GPS *&_gps;
|
||||
IMU *_imu;
|
||||
|
||||
// true if we are doing centripetal acceleration correction
|
||||
bool _centripetal;
|
||||
|
||||
// maximum gyroscope measurement error in rad/s (set to 7 degrees/second)
|
||||
static const float gyroMeasError = 20.0 * (M_PI/180.0);
|
||||
|
||||
float gyroMeasDrift;
|
||||
|
||||
// scaled tuning constants
|
||||
float beta;
|
||||
float zeta;
|
||||
|
||||
@ -124,11 +84,6 @@ private:
|
||||
// the current corrected gyro vector
|
||||
Vector3f _gyro_corrected;
|
||||
|
||||
// accel and gyro accumulators for drift correction
|
||||
Vector3f _gyro_sum;
|
||||
Vector3f _accel_sum;
|
||||
uint32_t _sum_count;
|
||||
|
||||
// estimate of error
|
||||
float _error_rp_sum;
|
||||
uint16_t _error_rp_count;
|
||||
|
Loading…
Reference in New Issue
Block a user