AP_Landing: restructure parameters into a structure

This commit is contained in:
Andrew Tridgell 2017-02-23 06:53:25 +11:00
parent 041fe38ba6
commit e7024d9203
4 changed files with 389 additions and 322 deletions

View File

@ -138,112 +138,38 @@ const AP_Param::GroupInfo AP_Landing::var_info[] = {
// @User: Standard
AP_GROUPINFO("TYPE", 14, AP_Landing, type, TYPE_STANDARD_GLIDE_SLOPE),
// @Param: DS_V_FWD
// @DisplayName: Deepstall forward velocity
// @Description: The forward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("DS_V_FWD", 15, AP_Landing, type_deepstall_forward_speed, 1),
// @Param: DS_SLOPE_A
// @DisplayName: Deepstall slope a
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("DS_SLOPE_A", 16, AP_Landing, type_deepstall_slope_a, 1),
// @Param: DS_SLOPE_B
// @DisplayName: Deepstall slope b
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("DS_SLOPE_B", 17, AP_Landing, type_deepstall_slope_b, 1),
// @Param: DS_APP_EXT
// @DisplayName: Deepstall approach extension
// @Description: The forward velocity of the aircraft while stalled
// @Range: 10 200
// @Units: meters
// @User: Advanced
AP_GROUPINFO("DS_APP_EXT", 18, AP_Landing, type_deepstall_approach_extension, 50),
// @Param: DS_V_DWN
// @DisplayName: Deepstall veloicty down
// @Description: The downward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("DS_V_DWN", 19, AP_Landing, type_deepstall_down_speed, 2),
// @Param: DS_SLEW_SPD
// @DisplayName: Deepstall slew speed
// @Description: The speed at which the elevator slews to deepstall
// @Range: 0 2
// @Units: seconds
// @User: Advanced
AP_GROUPINFO("DS_SLEW_SPD", 20, AP_Landing, type_deepstall_slew_speed, 0.5),
// @Param: DS_ELEV_PWM
// @DisplayName: Deepstall elevator PWM
// @Description: The PWM value for the elevator at full deflection in deepstall
// @Range: 900 2100
// @Units: PWM
// @User: Advanced
AP_GROUPINFO("DS_ELEV_PWM", 21, AP_Landing, type_deepstall_elevator_pwm, 1500),
// @Param: DS_ARSP_MAX
// @DisplayName: Deepstall enabled airspeed
// @Description: The maximum aispeed where the deepstall steering controller is allowed to have control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("DS_ARSP_MAX", 22, AP_Landing, type_deepstall_handoff_airspeed, 15.0),
// @Param: DS_ARSP_MIN
// @DisplayName: Deepstall minimum derating airspeed
// @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("DS_ARSP_MIN", 23, AP_Landing, type_deepstall_handoff_lower_limit_airspeed, 10.0),
// @Param: DS_L1
// @DisplayName: Deepstall L1 period
// @Description: Deepstall L1 navigational controller period
// @Range: 5 50
// @Units: meters
// @User: Advanced
AP_GROUPINFO("DS_L1", 24, AP_Landing, type_deepstall_L1_period, 30.0),
// @Param: DS_L1_I
// @DisplayName: Deepstall L1 I gain
// @Description: Deepstall L1 integratior gain
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("DS_L1_I", 25, AP_Landing, type_deepstall_L1_i, 0),
// @Param: DS_YAW_LIM
// @DisplayName: Deepstall yaw rate limit
// @Description: The yaw rate limit while navigating in deepstall
// @Range: 0 90
// @Units degrees per second
// @User: Advanced
AP_GROUPINFO("DS_YAW_LIM", 26, AP_Landing, type_deepstall_yaw_rate_limit, 10),
// @Param: DS_L1_TCON
// @DisplayName: Deepstall L1 time constant
// @Description: Time constant for deepstall L1 control
// @Range: 0 1
// @Units seconds
// @User: Advanced
AP_GROUPINFO("DS_L1_TCON", 27, AP_Landing, type_deepstall_time_constant, 0.4),
// @Group: DS_
// @Path: ../PID/PID.cpp
AP_SUBGROUPINFO(type_deepstall_PID, "DS_", 28, AP_Landing, PID),
// @Path: AP_Landing_Deepstall.cpp
AP_SUBGROUPINFO(deepstall, "DS_", 15, AP_Landing, AP_Landing_Deepstall),
AP_GROUPEND
};
// constructor
AP_Landing::AP_Landing(AP_Mission &_mission, AP_AHRS &_ahrs, AP_SpdHgtControl *_SpdHgt_Controller, AP_Navigation *_nav_controller, AP_Vehicle::FixedWing &_aparm,
set_target_altitude_proportion_fn_t _set_target_altitude_proportion_fn,
constrain_target_altitude_location_fn_t _constrain_target_altitude_location_fn,
adjusted_altitude_cm_fn_t _adjusted_altitude_cm_fn,
adjusted_relative_altitude_cm_fn_t _adjusted_relative_altitude_cm_fn,
disarm_if_autoland_complete_fn_t _disarm_if_autoland_complete_fn,
update_flight_stage_fn_t _update_flight_stage_fn) :
mission(_mission)
,ahrs(_ahrs)
,SpdHgt_Controller(_SpdHgt_Controller)
,nav_controller(_nav_controller)
,aparm(_aparm)
,set_target_altitude_proportion_fn(_set_target_altitude_proportion_fn)
,constrain_target_altitude_location_fn(_constrain_target_altitude_location_fn)
,adjusted_altitude_cm_fn(_adjusted_altitude_cm_fn)
,adjusted_relative_altitude_cm_fn(_adjusted_relative_altitude_cm_fn)
,disarm_if_autoland_complete_fn(_disarm_if_autoland_complete_fn)
,update_flight_stage_fn(_update_flight_stage_fn)
,deepstall(*this)
{
AP_Param::setup_object_defaults(this, var_info);
}
void AP_Landing::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude)
{
log(); // log old state so we get a nice transition from old to new here
@ -255,7 +181,7 @@ void AP_Landing::do_land(const AP_Mission::Mission_Command& cmd, const float rel
type_slope_do_land(cmd, relative_altitude);
break;
case TYPE_DEEPSTALL:
type_deepstall_do_land(cmd, relative_altitude);
deepstall.do_land(cmd, relative_altitude);
break;
default:
// a incorrect type is handled in the verify_land
@ -280,7 +206,7 @@ bool AP_Landing::verify_land(const Location &prev_WP_loc, Location &next_WP_loc,
height, sink_rate, wp_proportion, last_flying_ms, is_armed, is_flying, rangefinder_state_in_range);
break;
case TYPE_DEEPSTALL:
success = type_deepstall_verify_land(prev_WP_loc, next_WP_loc, current_loc,
success = deepstall.verify_land(prev_WP_loc, next_WP_loc, current_loc,
height, sink_rate, wp_proportion, last_flying_ms, is_armed, is_flying, rangefinder_state_in_range);
break;
default:
@ -303,7 +229,7 @@ bool AP_Landing::verify_abort_landing(const Location &prev_WP_loc, Location &nex
type_slope_verify_abort_landing(prev_WP_loc, next_WP_loc, throttle_suppressed);
break;
case TYPE_DEEPSTALL:
type_deepstall_verify_abort_landing(prev_WP_loc, next_WP_loc, throttle_suppressed);
deepstall.verify_abort_landing(prev_WP_loc, next_WP_loc, throttle_suppressed);
break;
default:
break;
@ -414,7 +340,7 @@ bool AP_Landing::override_servos(void) {
switch (type) {
case TYPE_DEEPSTALL:
return type_deepstall_override_servos();
return deepstall.override_servos();
case TYPE_STANDARD_GLIDE_SLOPE:
default:
return false;
@ -427,7 +353,7 @@ const DataFlash_Class::PID_Info* AP_Landing::get_pid_info(void) const
{
switch (type) {
case TYPE_DEEPSTALL:
return &type_deepstall_get_pid_info();
return &deepstall.get_pid_info();
case TYPE_STANDARD_GLIDE_SLOPE:
default:
return nullptr;
@ -529,7 +455,7 @@ bool AP_Landing::get_target_altitude_location(Location &location)
switch (type) {
case TYPE_DEEPSTALL:
return type_deepstall_get_target_altitude_location(location);
return deepstall.get_target_altitude_location(location);
case TYPE_STANDARD_GLIDE_SLOPE:
default:
return false;
@ -577,7 +503,7 @@ int32_t AP_Landing::get_target_airspeed_cm(void)
case TYPE_STANDARD_GLIDE_SLOPE:
return type_slope_get_target_airspeed_cm();
case TYPE_DEEPSTALL:
return type_deepstall_get_target_airspeed_cm();
return deepstall.get_target_airspeed_cm();
default:
// don't return the landing airspeed, because if type is invalid we have
// no postive indication that the land airspeed has been configured or
@ -599,7 +525,7 @@ bool AP_Landing::request_go_around(void)
success = type_slope_request_go_around();
break;
case TYPE_DEEPSTALL:
success = type_deepstall_request_go_around();
success = deepstall.request_go_around();
break;
default:
break;
@ -657,7 +583,7 @@ bool AP_Landing::is_throttle_suppressed(void) const
case TYPE_STANDARD_GLIDE_SLOPE:
return type_slope_is_throttle_suppressed();
case TYPE_DEEPSTALL:
return type_deepstall_is_throttle_suppressed();
return deepstall.is_throttle_suppressed();
default:
return false;
}

View File

@ -27,6 +27,7 @@
class AP_Landing
{
public:
friend class AP_Landing_Deepstall;
FUNCTOR_TYPEDEF(set_target_altitude_proportion_fn_t, void, const Location&, float);
FUNCTOR_TYPEDEF(constrain_target_altitude_location_fn_t, void, const Location&, const Location&);
@ -42,22 +43,7 @@ public:
adjusted_altitude_cm_fn_t _adjusted_altitude_cm_fn,
adjusted_relative_altitude_cm_fn_t _adjusted_relative_altitude_cm_fn,
disarm_if_autoland_complete_fn_t _disarm_if_autoland_complete_fn,
update_flight_stage_fn_t _update_flight_stage_fn):
mission(_mission)
,ahrs(_ahrs)
,SpdHgt_Controller(_SpdHgt_Controller)
,nav_controller(_nav_controller)
,aparm(_aparm)
,set_target_altitude_proportion_fn(_set_target_altitude_proportion_fn)
,constrain_target_altitude_location_fn(_constrain_target_altitude_location_fn)
,adjusted_altitude_cm_fn(_adjusted_altitude_cm_fn)
,adjusted_relative_altitude_cm_fn(_adjusted_relative_altitude_cm_fn)
,disarm_if_autoland_complete_fn(_disarm_if_autoland_complete_fn)
,update_flight_stage_fn(_update_flight_stage_fn)
{
AP_Param::setup_object_defaults(this, var_info);
}
update_flight_stage_fn_t _update_flight_stage_fn);
// NOTE: make sure to update is_type_valid()
@ -94,6 +80,7 @@ public:
// accessor functions for the params and states
static const struct AP_Param::GroupInfo var_info[];
int16_t get_pitch_cd(void) const { return pitch_cd; }
float get_flare_sec(void) const { return flare_sec; }
int8_t get_disarm_delay(void) const { return disarm_delay; }
@ -132,6 +119,9 @@ private:
AP_SpdHgtControl *SpdHgt_Controller;
AP_Navigation *nav_controller;
// support for deepstall landings
AP_Landing_Deepstall deepstall;
AP_Vehicle::FixedWing &aparm;
set_target_altitude_proportion_fn_t set_target_altitude_proportion_fn;
@ -155,21 +145,6 @@ private:
AP_Int8 flap_percent;
AP_Int8 throttle_slewrate;
AP_Int8 type;
AP_Float type_deepstall_forward_speed;
AP_Float type_deepstall_slope_a;
AP_Float type_deepstall_slope_b;
AP_Float type_deepstall_approach_extension;
AP_Float type_deepstall_down_speed;
AP_Float type_deepstall_slew_speed;
AP_Int16 type_deepstall_elevator_pwm;
AP_Float type_deepstall_handoff_airspeed;
AP_Float type_deepstall_handoff_lower_limit_airspeed;
AP_Float type_deepstall_L1_period;
AP_Float type_deepstall_L1_i;
AP_Float type_deepstall_yaw_rate_limit;
AP_Float type_deepstall_time_constant;
static const DataFlash_Class::PID_Info empty_pid;
// Land Type STANDARD GLIDE SLOPE
@ -205,56 +180,4 @@ private:
bool type_slope_is_on_approach(void) const;
bool type_slope_is_expecting_impact(void) const;
bool type_slope_is_throttle_suppressed(void) const;
// Landing type TYPE_DEEPSTALL
//public AP_Landing interface
void type_deepstall_do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude);
void type_deepstall_verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed);
bool type_deepstall_verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location &current_loc,
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms,
const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range);
void type_deepstall_setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc,
const Location &current_loc, int32_t &target_altitude_offset_cm);
bool type_deepstall_override_servos(void);
bool type_deepstall_request_go_around(void);
bool type_deepstall_get_target_altitude_location(Location &location);
int32_t type_deepstall_get_target_airspeed_cm(void) const;
bool type_deepstall_is_throttle_suppressed(void) const;
const DataFlash_Class::PID_Info& type_deepstall_get_pid_info(void) const;
//private helpers
void type_deepstall_build_approach_path();
float type_deepstall_predict_travel_distance(const Vector3f wind, const float height) const;
bool type_deepstall_verify_breakout(const Location &current_loc, const Location &target_loc, const float height_error) const;
float type_deepstall_update_steering(void);
// deepstall members
enum deepstall_stage {
DEEPSTALL_STAGE_FLY_TO_LANDING, // fly to the deepstall landing point
DEEPSTALL_STAGE_ESTIMATE_WIND, // loiter until we have a decent estimate of the wind for the target altitude
DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT, // wait until the aircraft is aligned for the optimal breakout
DEEPSTALL_STAGE_FLY_TO_ARC, // fly to the start of the arc
DEEPSTALL_STAGE_ARC, // fly the arc
DEEPSTALL_STAGE_APPROACH, // fly the approach in, and prepare to deepstall when close
DEEPSTALL_STAGE_LAND, // the aircraft will stall torwards the ground while targeting a given point
};
deepstall_stage type_deepstall_stage;
Location type_deepstall_landing_point;
Location type_deepstall_extended_approach;
Location type_deepstall_breakout_location;
Location type_deepstall_arc;
Location type_deepstall_arc_entry;
Location type_deepstall_arc_exit;
float type_deepstall_target_heading_deg; // target heading for the deepstall in degrees
uint32_t type_deepstall_stall_entry_time; // time when the aircrafted enter the stall (in millis)
uint16_t type_deepstall_initial_elevator_pwm; // PWM to start slewing the elevator up from
uint32_t type_deepstall_last_time; // last time the controller ran
float type_deepstall_L1_xtrack_i; // L1 integrator for navigation
PID type_deepstall_PID;
int32_t type_deepstall_last_target_bearing; // used for tracking the progress on loitering
int32_t type_deepstall_loiter_sum_cd; // used for tracking the progress on loitering
#define DEEPSTALL_LOITER_ALT_TOLERANCE 5.0f
};

View File

@ -22,140 +22,250 @@
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
// table of user settable parameters for deepstall
const AP_Param::GroupInfo AP_Landing_Deepstall::var_info[] = {
// @Param: DS_V_FWD
// @DisplayName: Deepstall forward velocity
// @Description: The forward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_FWD", 1, AP_Landing_Deepstall, forward_speed, 1),
// @Param: DS_SLOPE_A
// @DisplayName: Deepstall slope a
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_A", 2, AP_Landing_Deepstall, slope_a, 1),
// @Param: DS_SLOPE_B
// @DisplayName: Deepstall slope b
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_B", 3, AP_Landing_Deepstall, slope_b, 1),
// @Param: DS_APP_EXT
// @DisplayName: Deepstall approach extension
// @Description: The forward velocity of the aircraft while stalled
// @Range: 10 200
// @Units: meters
// @User: Advanced
AP_GROUPINFO("APP_EXT", 4, AP_Landing_Deepstall, approach_extension, 50),
// @Param: DS_V_DWN
// @DisplayName: Deepstall veloicty down
// @Description: The downward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_DWN", 5, AP_Landing_Deepstall, down_speed, 2),
// @Param: DS_SLEW_SPD
// @DisplayName: Deepstall slew speed
// @Description: The speed at which the elevator slews to deepstall
// @Range: 0 2
// @Units: seconds
// @User: Advanced
AP_GROUPINFO("SLEW_SPD", 6, AP_Landing_Deepstall, slew_speed, 0.5),
// @Param: DS_ELEV_PWM
// @DisplayName: Deepstall elevator PWM
// @Description: The PWM value for the elevator at full deflection in deepstall
// @Range: 900 2100
// @Units: PWM
// @User: Advanced
AP_GROUPINFO("ELEV_PWM", 7, AP_Landing_Deepstall, elevator_pwm, 1500),
// @Param: DS_ARSP_MAX
// @DisplayName: Deepstall enabled airspeed
// @Description: The maximum aispeed where the deepstall steering controller is allowed to have control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MAX", 8, AP_Landing_Deepstall, handoff_airspeed, 15.0),
// @Param: DS_ARSP_MIN
// @DisplayName: Deepstall minimum derating airspeed
// @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MIN", 9, AP_Landing_Deepstall, handoff_lower_limit_airspeed, 10.0),
// @Param: DS_L1
// @DisplayName: Deepstall L1 period
// @Description: Deepstall L1 navigational controller period
// @Range: 5 50
// @Units: meters
// @User: Advanced
AP_GROUPINFO("L1", 10, AP_Landing_Deepstall, L1_period, 30.0),
// @Param: DS_L1_I
// @DisplayName: Deepstall L1 I gain
// @Description: Deepstall L1 integratior gain
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("L1_I", 11, AP_Landing_Deepstall, L1_i, 0),
// @Param: DS_YAW_LIM
// @DisplayName: Deepstall yaw rate limit
// @Description: The yaw rate limit while navigating in deepstall
// @Range: 0 90
// @Units degrees per second
// @User: Advanced
AP_GROUPINFO("YAW_LIM", 12, AP_Landing_Deepstall, yaw_rate_limit, 10),
// @Param: DS_L1_TCON
// @DisplayName: Deepstall L1 time constant
// @Description: Time constant for deepstall L1 control
// @Range: 0 1
// @Units seconds
// @User: Advanced
AP_GROUPINFO("L1_TCON", 13, AP_Landing_Deepstall, time_constant, 0.4),
// @Group: DS_
// @Path: ../PID/PID.cpp
AP_SUBGROUPINFO(ds_PID, "", 13, AP_Landing_Deepstall, PID),
AP_GROUPEND
};
// if DEBUG_PRINTS is defined statustexts will be sent to the GCS for debug purposes
//#define DEBUG_PRINTS
void AP_Landing::type_deepstall_do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude)
void AP_Landing_Deepstall::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude)
{
type_deepstall_stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
type_deepstall_PID.reset_I();
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
ds_PID.reset_I();
// load the landing point in, the rest of path building is deferred for a better wind estimate
memcpy(&type_deepstall_landing_point, &cmd.content.location, sizeof(Location));
memcpy(&landing_point, &cmd.content.location, sizeof(Location));
}
// currently identical to the slope aborts
void AP_Landing::type_deepstall_verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed)
void AP_Landing_Deepstall::verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed)
{
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
// the altitude has been reached, restart the landing sequence
throttle_suppressed = false;
nav_controller->update_heading_hold(get_bearing_cd(prev_WP_loc, next_WP_loc));
landing.nav_controller->update_heading_hold(get_bearing_cd(prev_WP_loc, next_WP_loc));
}
/*
update navigation for landing
*/
bool AP_Landing::type_deepstall_verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location &current_loc,
bool AP_Landing_Deepstall::verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location &current_loc,
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms,
const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range)
{
switch (type_deepstall_stage) {
switch (stage) {
case DEEPSTALL_STAGE_FLY_TO_LANDING:
if (get_distance(current_loc, type_deepstall_landing_point) > 2 * aparm.loiter_radius) {
nav_controller->update_waypoint(current_loc, type_deepstall_landing_point);
if (get_distance(current_loc, landing_point) > 2 * landing.aparm.loiter_radius) {
landing.nav_controller->update_waypoint(current_loc, landing_point);
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_ESTIMATE_WIND;
type_deepstall_loiter_sum_cd = 0; // reset the loiter counter
stage = DEEPSTALL_STAGE_ESTIMATE_WIND;
loiter_sum_cd = 0; // reset the loiter counter
// no break
case DEEPSTALL_STAGE_ESTIMATE_WIND:
{
nav_controller->update_loiter(type_deepstall_landing_point, aparm.loiter_radius, 1);
if (!nav_controller->reached_loiter_target() || (fabsf(height) > DEEPSTALL_LOITER_ALT_TOLERANCE)) {
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1);
if (!landing.nav_controller->reached_loiter_target() || (fabsf(height) > DEEPSTALL_LOITER_ALT_TOLERANCE)) {
// wait until the altitude is correct before considering a breakout
return false;
}
// only count loiter progress when within the target altitude
int32_t target_bearing = nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - type_deepstall_last_target_bearing);
int32_t target_bearing = landing.nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - last_target_bearing);
if (delta > 0) { // only accumulate turns in the correct direction
type_deepstall_loiter_sum_cd += delta;
loiter_sum_cd += delta;
}
type_deepstall_last_target_bearing = target_bearing;
if (type_deepstall_loiter_sum_cd < 36000) {
last_target_bearing = target_bearing;
if (loiter_sum_cd < 36000) {
// wait until we've done at least one complete loiter at the correct altitude
nav_controller->update_loiter(type_deepstall_landing_point, aparm.loiter_radius, 1);
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1);
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT;
stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT;
//compute optimal path for landing
type_deepstall_build_approach_path();
build_approach_path();
// no break
}
case DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT:
if (!type_deepstall_verify_breakout(current_loc, type_deepstall_arc_entry, height)) {
nav_controller->update_loiter(type_deepstall_landing_point, aparm.loiter_radius, 1);
if (!verify_breakout(current_loc, arc_entry, height)) {
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, 1);
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_FLY_TO_ARC;
memcpy(&type_deepstall_breakout_location, &current_loc, sizeof(Location));
stage = DEEPSTALL_STAGE_FLY_TO_ARC;
memcpy(&breakout_location, &current_loc, sizeof(Location));
// no break
case DEEPSTALL_STAGE_FLY_TO_ARC:
if (get_distance(current_loc, type_deepstall_arc_entry) > 2 * aparm.loiter_radius) {
nav_controller->update_waypoint(type_deepstall_breakout_location, type_deepstall_arc_entry);
if (get_distance(current_loc, arc_entry) > 2 * landing.aparm.loiter_radius) {
landing.nav_controller->update_waypoint(breakout_location, arc_entry);
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_ARC;
stage = DEEPSTALL_STAGE_ARC;
// no break
case DEEPSTALL_STAGE_ARC:
{
Vector2f groundspeed = ahrs.groundspeed_vector();
if (!nav_controller->reached_loiter_target() ||
(fabsf(wrap_180(type_deepstall_target_heading_deg -
Vector2f groundspeed = landing.ahrs.groundspeed_vector();
if (!landing.nav_controller->reached_loiter_target() ||
(fabsf(wrap_180(target_heading_deg -
degrees(atan2f(-groundspeed.y, -groundspeed.x) + M_PI))) >= 10.0f)) {
nav_controller->update_loiter(type_deepstall_arc, aparm.loiter_radius, 1);
landing.nav_controller->update_loiter(arc, landing.aparm.loiter_radius, 1);
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_APPROACH;
stage = DEEPSTALL_STAGE_APPROACH;
}
// no break
case DEEPSTALL_STAGE_APPROACH:
{
Location entry_point;
nav_controller->update_waypoint(type_deepstall_arc_exit, type_deepstall_extended_approach);
landing.nav_controller->update_waypoint(arc_exit, extended_approach);
float relative_alt_D;
ahrs.get_relative_position_D_home(relative_alt_D);
landing.ahrs.get_relative_position_D_home(relative_alt_D);
const float travel_distance = type_deepstall_predict_travel_distance(ahrs.wind_estimate(), -relative_alt_D);
const float travel_distance = predict_travel_distance(landing.ahrs.wind_estimate(), -relative_alt_D);
memcpy(&entry_point, &type_deepstall_landing_point, sizeof(Location));
location_update(entry_point, type_deepstall_target_heading_deg + 180.0, travel_distance);
memcpy(&entry_point, &landing_point, sizeof(Location));
location_update(entry_point, target_heading_deg + 180.0, travel_distance);
if (!location_passed_point(current_loc, type_deepstall_arc_exit, entry_point)) {
if (location_passed_point(current_loc, type_deepstall_arc_exit, type_deepstall_extended_approach)) {
if (!location_passed_point(current_loc, arc_exit, entry_point)) {
if (location_passed_point(current_loc, arc_exit, extended_approach)) {
// this should never happen, but prevent against an indefinite fly away
type_deepstall_stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
}
return false;
}
type_deepstall_stage = DEEPSTALL_STAGE_LAND;
type_deepstall_stall_entry_time = AP_HAL::millis();
stage = DEEPSTALL_STAGE_LAND;
stall_entry_time = AP_HAL::millis();
const SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator);
if (elevator != nullptr) {
// take the last used elevator angle as the starting deflection
// don't worry about bailing here if the elevator channel can't be found
// that will be handled within override_servos
type_deepstall_initial_elevator_pwm = elevator->get_output_pwm();
initial_elevator_pwm = elevator->get_output_pwm();
}
type_deepstall_L1_xtrack_i = 0; // reset the integrators
L1_xtrack_i = 0; // reset the integrators
}
// no break
case DEEPSTALL_STAGE_LAND:
// while in deepstall the only thing verify needs to keep the extended approach point sufficently far away
nav_controller->update_waypoint(current_loc, type_deepstall_extended_approach);
landing.nav_controller->update_waypoint(current_loc, extended_approach);
return false;
default:
return true;
}
}
bool AP_Landing::type_deepstall_override_servos(void)
bool AP_Landing_Deepstall::override_servos(void)
{
if (!(type_deepstall_stage == DEEPSTALL_STAGE_LAND)) {
if (!(stage == DEEPSTALL_STAGE_LAND)) {
return false;
}
@ -165,33 +275,33 @@ bool AP_Landing::type_deepstall_override_servos(void)
// deepstalls are impossible without these channels, abort the process
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL,
"Deepstall: Unable to find the elevator channels");
type_deepstall_request_go_around();
request_go_around();
return false;
}
// calculate the progress on slewing the elevator
float slew_progress = 1.0f;
if (type_deepstall_slew_speed > 0) {
slew_progress = (AP_HAL::millis() - type_deepstall_stall_entry_time) / (100.0f * type_deepstall_slew_speed);
if (slew_speed > 0) {
slew_progress = (AP_HAL::millis() - stall_entry_time) / (100.0f * slew_speed);
slew_progress = constrain_float (slew_progress, 0.0f, 1.0f);
}
// mix the elevator to the correct value
elevator->set_output_pwm(linear_interpolate(type_deepstall_initial_elevator_pwm, type_deepstall_elevator_pwm,
elevator->set_output_pwm(linear_interpolate(initial_elevator_pwm, elevator_pwm,
slew_progress, 0.0f, 1.0f));
// use the current airspeed to dictate the travel limits
float airspeed;
ahrs.airspeed_estimate(&airspeed);
landing.ahrs.airspeed_estimate(&airspeed);
// only allow the deepstall steering controller to run below the handoff airspeed
if (slew_progress >= 1.0f || airspeed <= type_deepstall_handoff_airspeed) {
if (slew_progress >= 1.0f || airspeed <= handoff_airspeed) {
// run the steering conntroller
float pid = type_deepstall_update_steering();
float pid = update_steering();
float travel_limit = constrain_float((type_deepstall_handoff_airspeed - airspeed) /
(type_deepstall_handoff_airspeed - type_deepstall_handoff_lower_limit_airspeed) *
float travel_limit = constrain_float((handoff_airspeed - airspeed) /
(handoff_airspeed - handoff_lower_limit_airspeed) *
0.5f + 0.5f,
0.5f, 1.0f);
@ -210,90 +320,90 @@ bool AP_Landing::type_deepstall_override_servos(void)
return true;
}
bool AP_Landing::type_deepstall_request_go_around(void)
bool AP_Landing_Deepstall::request_go_around(void)
{
flags.commanded_go_around = true;
landing.flags.commanded_go_around = true;
return true;
}
bool AP_Landing::type_deepstall_is_throttle_suppressed(void) const
bool AP_Landing_Deepstall::is_throttle_suppressed(void) const
{
return type_deepstall_stage == DEEPSTALL_STAGE_LAND;
return stage == DEEPSTALL_STAGE_LAND;
}
bool AP_Landing::type_deepstall_get_target_altitude_location(Location &location)
bool AP_Landing_Deepstall::get_target_altitude_location(Location &location)
{
memcpy(&location, &type_deepstall_landing_point, sizeof(Location));
memcpy(&location, &landing_point, sizeof(Location));
return true;
}
int32_t AP_Landing::type_deepstall_get_target_airspeed_cm(void) const
int32_t AP_Landing_Deepstall::get_target_airspeed_cm(void) const
{
if (type_deepstall_stage == DEEPSTALL_STAGE_APPROACH ||
type_deepstall_stage == DEEPSTALL_STAGE_LAND) {
return pre_flare_airspeed * 100;
if (stage == DEEPSTALL_STAGE_APPROACH ||
stage == DEEPSTALL_STAGE_LAND) {
return landing.pre_flare_airspeed * 100;
} else {
return aparm.airspeed_cruise_cm;
return landing.aparm.airspeed_cruise_cm;
}
}
const DataFlash_Class::PID_Info& AP_Landing::type_deepstall_get_pid_info(void) const
const DataFlash_Class::PID_Info& AP_Landing_Deepstall::get_pid_info(void) const
{
return type_deepstall_PID.get_pid_info();
return ds_PID.get_pid_info();
}
void AP_Landing::type_deepstall_build_approach_path(void)
void AP_Landing_Deepstall::build_approach_path(void)
{
Vector3f wind = ahrs.wind_estimate();
Vector3f wind = landing.ahrs.wind_estimate();
// TODO: Support a user defined approach heading
type_deepstall_target_heading_deg = (degrees(atan2f(-wind.y, -wind.x)));
target_heading_deg = (degrees(atan2f(-wind.y, -wind.x)));
memcpy(&type_deepstall_extended_approach, &type_deepstall_landing_point, sizeof(Location));
memcpy(&type_deepstall_arc_exit, &type_deepstall_landing_point, sizeof(Location));
memcpy(&extended_approach, &landing_point, sizeof(Location));
memcpy(&arc_exit, &landing_point, sizeof(Location));
//extend the approach point to 1km away so that there is always a navigational target
location_update(type_deepstall_extended_approach, type_deepstall_target_heading_deg, 1000.0);
location_update(extended_approach, target_heading_deg, 1000.0);
float expected_travel_distance = type_deepstall_predict_travel_distance(wind, type_deepstall_landing_point.alt / 100);
float approach_extension = expected_travel_distance + type_deepstall_approach_extension;
float expected_travel_distance = predict_travel_distance(wind, landing_point.alt / 100);
float approach_extension_m = expected_travel_distance + approach_extension;
// an approach extension of 0 can result in a divide by 0
if (fabsf(approach_extension) < 1.0f) {
approach_extension = 1.0f;
if (fabsf(approach_extension_m) < 1.0f) {
approach_extension_m = 1.0f;
}
location_update(type_deepstall_arc_exit, type_deepstall_target_heading_deg + 180, approach_extension);
memcpy(&type_deepstall_arc, &type_deepstall_arc_exit, sizeof(Location));
memcpy(&type_deepstall_arc_entry, &type_deepstall_arc_exit, sizeof(Location));
location_update(arc_exit, target_heading_deg + 180, approach_extension_m);
memcpy(&arc, &arc_exit, sizeof(Location));
memcpy(&arc_entry, &arc_exit, sizeof(Location));
// TODO: Support loitering on either side of the approach path
location_update(type_deepstall_arc, type_deepstall_target_heading_deg + 90.0, aparm.loiter_radius);
location_update(type_deepstall_arc_entry, type_deepstall_target_heading_deg + 90.0, aparm.loiter_radius * 2);
location_update(arc, target_heading_deg + 90.0, landing.aparm.loiter_radius);
location_update(arc_entry, target_heading_deg + 90.0, landing.aparm.loiter_radius * 2);
#ifdef DEBUG_PRINTS
// TODO: Send this information via a MAVLink packet
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Arc: %3.8f %3.8f",
(double)(type_deepstall_arc.lat / 1e7),(double)( type_deepstall_arc.lng / 1e7));
(double)(arc.lat / 1e7),(double)( arc.lng / 1e7));
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Loiter en: %3.8f %3.8f",
(double)(type_deepstall_arc_entry.lat / 1e7), (double)(type_deepstall_arc_entry.lng / 1e7));
(double)(arc_entry.lat / 1e7), (double)(arc_entry.lng / 1e7));
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Loiter ex: %3.8f %3.8f",
(double)(type_deepstall_arc_exit.lat / 1e7), (double)(type_deepstall_arc_exit.lng / 1e7));
(double)(arc_exit.lat / 1e7), (double)(arc_exit.lng / 1e7));
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Extended: %3.8f %3.8f",
(double)(type_deepstall_extended_approach.lat / 1e7), (double)(type_deepstall_extended_approach.lng / 1e7));
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension,
(double)(extended_approach.lat / 1e7), (double)(extended_approach.lng / 1e7));
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension_m,
(double)expected_travel_distance);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)type_deepstall_target_heading_deg);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)target_heading_deg);
#endif // DEBUG_PRINTS
}
float AP_Landing::type_deepstall_predict_travel_distance(const Vector3f wind, const float height) const
float AP_Landing_Deepstall::predict_travel_distance(const Vector3f wind, const float height) const
{
bool reverse = false;
float course = radians(type_deepstall_target_heading_deg);
float course = radians(target_heading_deg);
// a forward speed of 0 will result in a divide by 0
float forward_speed = MAX(type_deepstall_forward_speed, 0.1f);
float forward_speed_ms = MAX(forward_speed, 0.1f);
Vector2f wind_vec(wind.x, wind.y); // work with the 2D component of wind
float wind_length = MAX(wind_vec.length(), 0.05f); // always assume a slight wind to avoid divide by 0
@ -302,7 +412,7 @@ float AP_Landing::type_deepstall_predict_travel_distance(const Vector3f wind, co
float offset = course + atan2f(-wind.y, -wind.x) + M_PI;
// estimator for how far the aircraft will travel while entering the stall
float stall_distance = type_deepstall_slope_a * wind_length * cosf(offset) + type_deepstall_slope_b;
float stall_distance = slope_a * wind_length * cosf(offset) + slope_b;
float theta = acosf(constrain_float((wind_vec * course_vec) / wind_length, -1.0f, 1.0f));
if ((course_vec % wind_vec) > 0) {
@ -311,25 +421,25 @@ float AP_Landing::type_deepstall_predict_travel_distance(const Vector3f wind, co
}
float cross_component = sinf(theta) * wind_length;
float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed, -1.0f, 1.0f));
float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed_ms, -1.0f, 1.0f));
if (reverse) {
estimated_crab_angle *= -1;
}
float estimated_forward = cosf(estimated_crab_angle) * forward_speed + cosf(theta) * wind_length;
float estimated_forward = cosf(estimated_crab_angle) * forward_speed_ms + cosf(theta) * wind_length;
#ifdef DEBUG_PRINTS
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Predict: %f %f", stall_distance, estimated_forward * height / type_deepstall_down_speed + stall_distance);
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "Predict: %f %f", stall_distance, estimated_forward * height / down_speed + stall_distance);
#endif // DEBUG_PRINTS
return estimated_forward * height / type_deepstall_down_speed + stall_distance;
return estimated_forward * height / down_speed + stall_distance;
}
bool AP_Landing::type_deepstall_verify_breakout(const Location &current_loc, const Location &target_loc,
bool AP_Landing_Deepstall::verify_breakout(const Location &current_loc, const Location &target_loc,
const float height_error) const
{
Vector2f location_delta = location_diff(current_loc, target_loc);
const float heading_error = degrees(ahrs.groundspeed_vector().angle(location_delta));
const float heading_error = degrees(landing.ahrs.groundspeed_vector().angle(location_delta));
// Check to see if the the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg)
// of margin so that the altitude to be within 5 meters of desired
@ -341,49 +451,49 @@ bool AP_Landing::type_deepstall_verify_breakout(const Location &current_loc, con
return false;
}
float AP_Landing::type_deepstall_update_steering()
float AP_Landing_Deepstall::update_steering()
{
Location current_loc;
if (!ahrs.get_position(current_loc)) {
if (!landing.ahrs.get_position(current_loc)) {
// panic if no position source is available
// continue the deepstall. but target just holding the wings held level as deepstall should be a minimal energy
// continue the but target just holding the wings held level as deepstall should be a minimal energy
// configuration on the aircraft, and if a position isn't available aborting would be worse
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "Deepstall: No position available. Attempting to hold level");
memcpy(&current_loc, &type_deepstall_landing_point, sizeof(Location));
memcpy(&current_loc, &landing_point, sizeof(Location));
}
uint32_t time = AP_HAL::millis();
float dt = constrain_float(time - type_deepstall_last_time, (uint32_t)10UL, (uint32_t)200UL) / 1000.0;
type_deepstall_last_time = time;
float dt = constrain_float(time - last_time, (uint32_t)10UL, (uint32_t)200UL) / 1000.0;
last_time = time;
Vector2f ab = location_diff(type_deepstall_arc_exit, type_deepstall_extended_approach);
Vector2f ab = location_diff(arc_exit, extended_approach);
ab.normalize();
Vector2f a_air = location_diff(type_deepstall_arc_exit, current_loc);
Vector2f a_air = location_diff(arc_exit, current_loc);
float crosstrack_error = a_air % ab;
float sine_nu1 = constrain_float(crosstrack_error / MAX(type_deepstall_L1_period, 0.1f), -0.7071f, 0.7107f);
float sine_nu1 = constrain_float(crosstrack_error / MAX(L1_period, 0.1f), -0.7071f, 0.7107f);
float nu1 = asinf(sine_nu1);
if (type_deepstall_L1_i > 0) {
type_deepstall_L1_xtrack_i += nu1 * type_deepstall_L1_i / dt;
type_deepstall_L1_xtrack_i = constrain_float(type_deepstall_L1_xtrack_i, -0.5f, 0.5f);
nu1 += type_deepstall_L1_xtrack_i;
if (L1_i > 0) {
L1_xtrack_i += nu1 * L1_i / dt;
L1_xtrack_i = constrain_float(L1_xtrack_i, -0.5f, 0.5f);
nu1 += L1_xtrack_i;
}
float desired_change = wrap_PI(radians(type_deepstall_target_heading_deg) + nu1 - ahrs.yaw);
float desired_change = wrap_PI(radians(target_heading_deg) + nu1 - landing.ahrs.yaw);
float yaw_rate = ahrs.get_gyro().z;
float yaw_rate_limit = radians(type_deepstall_yaw_rate_limit);
float error = wrap_PI(constrain_float(desired_change / type_deepstall_time_constant,
-yaw_rate_limit, yaw_rate_limit) - yaw_rate);
float yaw_rate = landing.ahrs.get_gyro().z;
float yaw_rate_limit_rps = radians(yaw_rate_limit);
float error = wrap_PI(constrain_float(desired_change / time_constant,
-yaw_rate_limit_rps, yaw_rate_limit_rps) - yaw_rate);
#ifdef DEBUG_PRINTS
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO, "x: %f e: %f r: %f d: %f",
(double)crosstrack_error,
(double)error,
(double)degrees(yaw_rate),
(double)location_diff(current_loc, type_deepstall_landing_point).length());
(double)location_diff(current_loc, landing_point).length());
#endif // DEBUG_PRINTS
return type_deepstall_PID.get_pid(error);
return ds_PID.get_pid(error);
}

View File

@ -0,0 +1,108 @@
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <AP_Param/AP_Param.h>
#include <AP_Mission/AP_Mission.h>
#include <AP_Common/AP_Common.h>
#include <AP_SpdHgtControl/AP_SpdHgtControl.h>
#include <AP_Navigation/AP_Navigation.h>
#include <PID/PID.h>
class AP_Landing;
/// @class AP_Landing
/// @brief Class managing ArduPlane landing methods
class AP_Landing_Deepstall
{
private:
friend class AP_Landing;
// constructor
AP_Landing_Deepstall(AP_Landing &_landing) :
landing(_landing)
{
AP_Param::setup_object_defaults(this, var_info);
}
AP_Landing &landing;
static const struct AP_Param::GroupInfo var_info[];
// deepstall members
enum deepstall_stage {
DEEPSTALL_STAGE_FLY_TO_LANDING, // fly to the deepstall landing point
DEEPSTALL_STAGE_ESTIMATE_WIND, // loiter until we have a decent estimate of the wind for the target altitude
DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT, // wait until the aircraft is aligned for the optimal breakout
DEEPSTALL_STAGE_FLY_TO_ARC, // fly to the start of the arc
DEEPSTALL_STAGE_ARC, // fly the arc
DEEPSTALL_STAGE_APPROACH, // fly the approach in, and prepare to deepstall when close
DEEPSTALL_STAGE_LAND, // the aircraft will stall torwards the ground while targeting a given point
};
AP_Float forward_speed;
AP_Float slope_a;
AP_Float slope_b;
AP_Float approach_extension;
AP_Float down_speed;
AP_Float slew_speed;
AP_Int16 elevator_pwm;
AP_Float handoff_airspeed;
AP_Float handoff_lower_limit_airspeed;
AP_Float L1_period;
AP_Float L1_i;
AP_Float yaw_rate_limit;
AP_Float time_constant;
int32_t loiter_sum_cd; // used for tracking the progress on loitering
deepstall_stage stage;
Location landing_point;
Location extended_approach;
Location breakout_location;
Location arc;
Location arc_entry;
Location arc_exit;
float target_heading_deg; // target heading for the deepstall in degrees
uint32_t stall_entry_time; // time when the aircrafted enter the stall (in millis)
uint16_t initial_elevator_pwm; // PWM to start slewing the elevator up from
uint32_t last_time; // last time the controller ran
float L1_xtrack_i; // L1 integrator for navigation
PID ds_PID;
int32_t last_target_bearing; // used for tracking the progress on loitering
//public AP_Landing interface
void do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude);
void verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed);
bool verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location &current_loc,
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms,
const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range);
void setup_landing_glide_slope(const Location &prev_WP_loc, const Location &next_WP_loc,
const Location &current_loc, int32_t &target_altitude_offset_cm);
bool override_servos(void);
bool request_go_around(void);
bool get_target_altitude_location(Location &location);
int32_t get_target_airspeed_cm(void) const;
bool is_throttle_suppressed(void) const;
const DataFlash_Class::PID_Info& get_pid_info(void) const;
//private helpers
void build_approach_path();
float predict_travel_distance(const Vector3f wind, const float height) const;
bool verify_breakout(const Location &current_loc, const Location &target_loc, const float height_error) const;
float update_steering(void);
#define DEEPSTALL_LOITER_ALT_TOLERANCE 5.0f
};