AP_EFI: removed array from cylinder_status
this array was never used and just makes doing drivers harder. Removed to reduce complexity
This commit is contained in:
parent
15314b8ed6
commit
e69043c77c
@ -212,7 +212,6 @@ void AP_EFI::log_status(void)
|
||||
uint8_t(state.spark_plug_usage),
|
||||
uint8_t(state.ecu_index));
|
||||
|
||||
for (uint8_t i = 0; i < ENGINE_MAX_CYLINDERS; i++) {
|
||||
// @LoggerMessage: ECYL
|
||||
// @Description: EFI per-cylinder information
|
||||
// @Field: TimeUS: Time since system startup
|
||||
@ -223,20 +222,19 @@ void AP_EFI::log_status(void)
|
||||
// @Field: EGT: Exhaust gas temperature
|
||||
// @Field: Lambda: Estimated lambda coefficient (dimensionless ratio)
|
||||
// @Field: IDX: Index of the publishing ECU
|
||||
AP::logger().WriteStreaming("ECYL",
|
||||
"TimeUS,Inst,IgnT,InjT,CHT,EGT,Lambda,IDX",
|
||||
"s#dsOO--",
|
||||
"F-0C0000",
|
||||
"QBfffffB",
|
||||
AP_HAL::micros64(),
|
||||
i,
|
||||
state.cylinder_status[i].ignition_timing_deg,
|
||||
state.cylinder_status[i].injection_time_ms,
|
||||
state.cylinder_status[i].cylinder_head_temperature,
|
||||
state.cylinder_status[i].exhaust_gas_temperature,
|
||||
state.cylinder_status[i].lambda_coefficient,
|
||||
state.ecu_index);
|
||||
}
|
||||
AP::logger().WriteStreaming("ECYL",
|
||||
"TimeUS,Inst,IgnT,InjT,CHT,EGT,Lambda,IDX",
|
||||
"s#dsOO--",
|
||||
"F-0C0000",
|
||||
"QBfffffB",
|
||||
AP_HAL::micros64(),
|
||||
0,
|
||||
state.cylinder_status.ignition_timing_deg,
|
||||
state.cylinder_status.injection_time_ms,
|
||||
state.cylinder_status.cylinder_head_temperature,
|
||||
state.cylinder_status.exhaust_gas_temperature,
|
||||
state.cylinder_status.lambda_coefficient,
|
||||
state.ecu_index);
|
||||
}
|
||||
#endif // LOGGING_ENABLED
|
||||
|
||||
@ -261,10 +259,10 @@ void AP_EFI::send_mavlink_status(mavlink_channel_t chan)
|
||||
state.atmospheric_pressure_kpa,
|
||||
state.intake_manifold_pressure_kpa,
|
||||
KELVIN_TO_C(state.intake_manifold_temperature),
|
||||
KELVIN_TO_C(state.cylinder_status[0].cylinder_head_temperature),
|
||||
state.cylinder_status[0].ignition_timing_deg,
|
||||
state.cylinder_status[0].injection_time_ms,
|
||||
0, // exhaust gas temperature
|
||||
KELVIN_TO_C(state.cylinder_status.cylinder_head_temperature),
|
||||
state.cylinder_status.ignition_timing_deg,
|
||||
state.cylinder_status.injection_time_ms,
|
||||
state.cylinder_status.exhaust_gas_temperature,
|
||||
0, // throttle out
|
||||
0, // pressure/temperature compensation
|
||||
0 // ignition voltage (spark supply voltage)
|
||||
@ -285,7 +283,6 @@ void AP_EFI::handle_scripting(const EFI_State &efi_state)
|
||||
if (!backend || (Type(type.get()) != Type::SCRIPTING)) {
|
||||
return;
|
||||
}
|
||||
|
||||
backend->handle_scripting(efi_state);
|
||||
}
|
||||
|
||||
|
@ -84,16 +84,13 @@ bool AP_EFI_Currawong_ECU::handle_message(AP_HAL::CANFrame &frame)
|
||||
} else if (decodeECU_TelemetrySlow0PacketStructure(&frame, &telemetry_slow0)) {
|
||||
internal_state.intake_manifold_pressure_kpa = telemetry_slow0.map;
|
||||
internal_state.atmospheric_pressure_kpa = telemetry_slow0.baro;
|
||||
internal_state.cylinder_status[0].cylinder_head_temperature = C_TO_KELVIN(telemetry_slow0.cht);
|
||||
internal_state.cylinder_status.cylinder_head_temperature = C_TO_KELVIN(telemetry_slow0.cht);
|
||||
} else if (decodeECU_TelemetrySlow1PacketStructure(&frame, &telemetry_slow1)) {
|
||||
internal_state.intake_manifold_temperature = C_TO_KELVIN(telemetry_slow1.mat);
|
||||
internal_state.fuel_pressure = telemetry_slow1.fuelPressure;
|
||||
} else if (decodeECU_TelemetrySlow2PacketStructure(&frame, &telemetry_slow2)) {
|
||||
internal_state.cylinder_status[0].ignition_timing_deg = telemetry_slow2.ignAngle1;
|
||||
if (ENGINE_MAX_CYLINDERS > 1) {
|
||||
internal_state.cylinder_status[1].ignition_timing_deg = telemetry_slow2.ignAngle2;
|
||||
}
|
||||
|
||||
internal_state.cylinder_status.ignition_timing_deg = telemetry_slow2.ignAngle1;
|
||||
|
||||
internal_state.fuel_consumption_rate_cm3pm = telemetry_slow2.flowRate / KG_PER_M3_TO_G_PER_CM3(get_ecu_fuel_density());
|
||||
} else {
|
||||
valid = false;
|
||||
|
@ -154,7 +154,7 @@ void AP_EFI_DroneCAN::handle_status(const uavcan::equipment::ice::reciprocating:
|
||||
// assume max one cylinder status
|
||||
if (pkt.cylinder_status.size() > 0) {
|
||||
const auto &cs = pkt.cylinder_status[0];
|
||||
auto &c = istate.cylinder_status[0];
|
||||
auto &c = istate.cylinder_status;
|
||||
c.ignition_timing_deg = cs.ignition_timing_deg;
|
||||
c.injection_time_ms = cs.injection_time_ms;
|
||||
c.cylinder_head_temperature = cs.cylinder_head_temperature;
|
||||
|
@ -45,7 +45,7 @@ void AP_EFI_NWPMU::handle_frame(AP_HAL::CANFrame &frame)
|
||||
memcpy(&data, frame.data, sizeof(data));
|
||||
internal_state.engine_speed_rpm = data.rpm;
|
||||
internal_state.throttle_position_percent = data.tps * 0.1f;
|
||||
internal_state.cylinder_status[0].ignition_timing_deg = data.ignition_angle * 0.1f;
|
||||
internal_state.cylinder_status.ignition_timing_deg = data.ignition_angle * 0.1f;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -65,7 +65,7 @@ void AP_EFI_NWPMU::handle_frame(AP_HAL::CANFrame &frame)
|
||||
default:
|
||||
break;
|
||||
}
|
||||
internal_state.cylinder_status[0].lambda_coefficient = data.lambda * 0.01f;
|
||||
internal_state.cylinder_status.lambda_coefficient = data.lambda * 0.01f;
|
||||
break;
|
||||
}
|
||||
|
||||
@ -87,11 +87,11 @@ void AP_EFI_NWPMU::handle_frame(AP_HAL::CANFrame &frame)
|
||||
switch((NWPMU_TEMPERATURE_TYPE)data.temp_type) {
|
||||
case NWPMU_TEMPERATURE_TYPE::C:
|
||||
internal_state.coolant_temperature = C_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
internal_state.cylinder_status[0].cylinder_head_temperature = C_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
internal_state.cylinder_status.cylinder_head_temperature = C_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
break;
|
||||
case NWPMU_TEMPERATURE_TYPE::F:
|
||||
internal_state.coolant_temperature = F_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
internal_state.cylinder_status[0].cylinder_head_temperature = F_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
internal_state.cylinder_status.cylinder_head_temperature = F_TO_KELVIN(data.coolant_temp * 0.1f);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
@ -67,19 +67,19 @@ void AP_EFI_Serial_Lutan::update()
|
||||
if (crc == crc2) {
|
||||
// valid data
|
||||
internal_state.spark_dwell_time_ms = int16_t(be16toh(data.dwell))*0.1;
|
||||
internal_state.cylinder_status[0].injection_time_ms = be16toh(data.pulseWidth1)*0.00666;
|
||||
internal_state.cylinder_status.injection_time_ms = be16toh(data.pulseWidth1)*0.00666;
|
||||
internal_state.engine_speed_rpm = be16toh(data.rpm);
|
||||
internal_state.atmospheric_pressure_kpa = int16_t(be16toh(data.barometer))*0.1;
|
||||
internal_state.intake_manifold_pressure_kpa = int16_t(be16toh(data.map))*0.1;
|
||||
internal_state.intake_manifold_temperature = degF_to_Kelvin(int16_t(be16toh(data.mat))*0.1);
|
||||
internal_state.coolant_temperature = degF_to_Kelvin(int16_t(be16toh(data.coolant))*0.1);
|
||||
// CHT is in coolant field
|
||||
internal_state.cylinder_status[0].cylinder_head_temperature = internal_state.coolant_temperature;
|
||||
internal_state.cylinder_status.cylinder_head_temperature = internal_state.coolant_temperature;
|
||||
internal_state.throttle_position_percent = int16_t(be16toh(data.tps))*0.1;
|
||||
|
||||
// integrate fuel consumption
|
||||
if (internal_state.engine_speed_rpm > RPM_THRESHOLD) {
|
||||
const float duty_cycle = (internal_state.cylinder_status[0].injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
|
||||
const float duty_cycle = (internal_state.cylinder_status.injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
|
||||
internal_state.fuel_consumption_rate_cm3pm = duty_cycle*get_coef1() - get_coef2();
|
||||
internal_state.estimated_consumed_fuel_volume_cm3 += internal_state.fuel_consumption_rate_cm3pm * (now - internal_state.last_updated_ms)/60000.0f;
|
||||
} else {
|
||||
|
@ -86,7 +86,7 @@ bool AP_EFI_Serial_MS::read_incoming_realtime_data()
|
||||
float temp_float;
|
||||
switch (offset) {
|
||||
case PW1_MSB:
|
||||
internal_state.cylinder_status[0].injection_time_ms = (float)((data << 8) + read_byte_CRC32())/1000.0f;
|
||||
internal_state.cylinder_status.injection_time_ms = (float)((data << 8) + read_byte_CRC32())/1000.0f;
|
||||
offset++; // increment the counter because we read a byte in the previous line
|
||||
break;
|
||||
case RPM_MSB:
|
||||
@ -95,7 +95,7 @@ bool AP_EFI_Serial_MS::read_incoming_realtime_data()
|
||||
offset++;
|
||||
break;
|
||||
case ADVANCE_MSB:
|
||||
internal_state.cylinder_status[0].ignition_timing_deg = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
internal_state.cylinder_status.ignition_timing_deg = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
offset++;
|
||||
break;
|
||||
case ENGINE_BM:
|
||||
@ -116,7 +116,7 @@ bool AP_EFI_Serial_MS::read_incoming_realtime_data()
|
||||
case CHT_MSB:
|
||||
temp_float = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
offset++;
|
||||
internal_state.cylinder_status[0].cylinder_head_temperature = degF_to_Kelvin(temp_float);
|
||||
internal_state.cylinder_status.cylinder_head_temperature = degF_to_Kelvin(temp_float);
|
||||
break;
|
||||
case TPS_MSB:
|
||||
temp_float = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
@ -126,7 +126,7 @@ bool AP_EFI_Serial_MS::read_incoming_realtime_data()
|
||||
case AFR1_MSB:
|
||||
temp_float = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
offset++;
|
||||
internal_state.cylinder_status[0].lambda_coefficient = temp_float;
|
||||
internal_state.cylinder_status.lambda_coefficient = temp_float;
|
||||
break;
|
||||
case DWELL_MSB:
|
||||
temp_float = (float)((data << 8) + read_byte_CRC32())/10.0f;
|
||||
@ -160,7 +160,7 @@ bool AP_EFI_Serial_MS::read_incoming_realtime_data()
|
||||
|
||||
// Calculate Fuel Consumption
|
||||
// Duty Cycle (Percent, because that's how HFE gives us the calibration coefficients)
|
||||
float duty_cycle = (internal_state.cylinder_status[0].injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
|
||||
float duty_cycle = (internal_state.cylinder_status.injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
|
||||
uint32_t current_time = AP_HAL::millis();
|
||||
// Super Simplified integration method - Error Analysis TBD
|
||||
// This calculation gives erroneous results when the engine isn't running
|
||||
|
@ -17,7 +17,6 @@
|
||||
|
||||
#define EFI_MAX_INSTANCES 2
|
||||
#define EFI_MAX_BACKENDS 2
|
||||
#define ENGINE_MAX_CYLINDERS 1
|
||||
|
||||
#include <AP_Common/AP_Common.h>
|
||||
#include <AP_HAL/AP_HAL.h>
|
||||
@ -197,6 +196,6 @@ struct EFI_State {
|
||||
Spark_Plug_Usage spark_plug_usage;
|
||||
|
||||
// Status for each cylinder in the engine
|
||||
Cylinder_Status cylinder_status[ENGINE_MAX_CYLINDERS];
|
||||
Cylinder_Status cylinder_status;
|
||||
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user