AP_Mount: Servo restructure and support for ef/bf angle and rate

This commit is contained in:
Randy Mackay 2022-06-23 12:39:10 +09:00
parent 80b70dcd66
commit d59e87ea59
2 changed files with 81 additions and 98 deletions

View File

@ -18,84 +18,86 @@ void AP_Mount_Servo::init()
_pan_idx = SRV_Channel::k_mount2_pan;
_open_idx = SRV_Channel::k_mount2_open;
}
// check which servos have been assigned
check_servo_map();
}
// update mount position - should be called periodically
void AP_Mount_Servo::update()
{
static bool mount_open = 0; // 0 is closed
// check servo map every three seconds to allow users to modify parameters
uint32_t now = AP_HAL::millis();
if (now - _last_check_servo_map_ms > 3000) {
check_servo_map();
_last_check_servo_map_ms = now;
}
switch(get_mode()) {
switch (get_mode()) {
// move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage
case MAV_MOUNT_MODE_RETRACT:
{
case MAV_MOUNT_MODE_RETRACT: {
_angle_bf_output_deg = _state._retract_angles.get();
// initialise _angle_rad to smooth transition if user changes to RC_TARGETTING
_angle_rad.roll = radians(_angle_bf_output_deg.x);
_angle_rad.pitch = radians(_angle_bf_output_deg.y);
_angle_rad.yaw = radians(_angle_bf_output_deg.z);
_angle_rad.yaw_is_ef = false;
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL:
{
case MAV_MOUNT_MODE_NEUTRAL: {
_angle_bf_output_deg = _state._neutral_angles.get();
// initialise _angle_rad to smooth transition if user changes to RC_TARGETTING
_angle_rad.roll = radians(_angle_bf_output_deg.x);
_angle_rad.pitch = radians(_angle_bf_output_deg.y);
_angle_rad.yaw = radians(_angle_bf_output_deg.z);
_angle_rad.yaw_is_ef = false;
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
{
// earth-frame angle targets (i.e. _angle_ef_target_rad) should have already been set by a MOUNT_CONTROL message from GCS
stabilize();
case MAV_MOUNT_MODE_MAVLINK_TARGETING: {
switch (mavt_target.target_type) {
case MountTargetType::ANGLE:
_angle_rad = mavt_target.angle_rad;
break;
case MountTargetType::RATE:
update_angle_target_from_rate(mavt_target.rate_rads, _angle_rad);
break;
}
// update _angle_bf_output_deg based on angle target
update_angle_outputs(_angle_rad);
break;
}
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING:
{
// update targets using pilot's rc inputs
update_targets_from_rc();
stabilize();
case MAV_MOUNT_MODE_RC_TARGETING: {
// update targets using pilot's RC inputs
MountTarget rc_target {};
if (get_rc_rate_target(rc_target)) {
update_angle_target_from_rate(rc_target, _angle_rad);
} else if (get_rc_angle_target(rc_target)) {
_angle_rad = rc_target;
}
// update _angle_bf_output_deg based on angle target
update_angle_outputs(_angle_rad);
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
{
if (calc_angle_to_roi_target(_angle_ef_target_rad, _flags.tilt_control, _flags.pan_control, true)) {
stabilize();
// point mount to a GPS location
case MAV_MOUNT_MODE_GPS_POINT: {
if (get_angle_target_to_roi(_angle_rad)) {
update_angle_outputs(_angle_rad);
}
break;
}
case MAV_MOUNT_MODE_HOME_LOCATION:
// constantly update the home location:
if (!AP::ahrs().home_is_set()) {
break;
}
_roi_target = AP::ahrs().get_home();
_roi_target_set = true;
if (calc_angle_to_roi_target(_angle_ef_target_rad, _flags.tilt_control, _flags.pan_control, true)) {
stabilize();
case MAV_MOUNT_MODE_HOME_LOCATION: {
if (get_angle_target_to_home(_angle_rad)) {
update_angle_outputs(_angle_rad);
}
break;
}
case MAV_MOUNT_MODE_SYSID_TARGET:
if (calc_angle_to_sysid_target(_angle_ef_target_rad,
_flags.tilt_control,
_flags.pan_control,
true)) {
stabilize();
case MAV_MOUNT_MODE_SYSID_TARGET: {
if (get_angle_target_to_sysid(_angle_rad)) {
update_angle_outputs(_angle_rad);
}
break;
}
default:
//do nothing
@ -103,11 +105,8 @@ void AP_Mount_Servo::update()
}
// move mount to a "retracted position" into the fuselage with a fourth servo
bool mount_open_new = (get_mode() == MAV_MOUNT_MODE_RETRACT) ? 0 : 1;
if (mount_open != mount_open_new) {
mount_open = mount_open_new;
move_servo(_open_idx, mount_open_new, 0, 1);
}
const bool mount_open = (get_mode() == MAV_MOUNT_MODE_RETRACT) ? 0 : 1;
move_servo(_open_idx, mount_open, 0, 1);
// write the results to the servos
move_servo(_roll_idx, _angle_bf_output_deg.x*10, _state._roll_angle_min*0.1f, _state._roll_angle_max*0.1f);
@ -115,48 +114,44 @@ void AP_Mount_Servo::update()
move_servo(_pan_idx, _angle_bf_output_deg.z*10, _state._pan_angle_min*0.1f, _state._pan_angle_max*0.1f);
}
// private methods
// check_servo_map - detects which axis we control using the functions assigned to the servos in the RC_Channel_aux
// should be called periodically (i.e. 1hz or less)
void AP_Mount_Servo::check_servo_map()
// returns true if this mount can control its pan (required for multicopters)
bool AP_Mount_Servo::has_pan_control() const
{
_flags.roll_control = SRV_Channels::function_assigned(_roll_idx);
_flags.tilt_control = SRV_Channels::function_assigned(_tilt_idx);
_flags.pan_control = SRV_Channels::function_assigned(_pan_idx);
return SRV_Channels::function_assigned(_pan_idx);
}
// private methods
// send_mount_status - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
void AP_Mount_Servo::send_mount_status(mavlink_channel_t chan)
{
mavlink_msg_mount_status_send(chan, 0, 0, _angle_bf_output_deg.y*100, _angle_bf_output_deg.x*100, _angle_bf_output_deg.z*100, _mode);
}
// stabilize - stabilizes the mount relative to the Earth's frame
// input: _angle_ef_target_rad (earth frame targets in radians)
// output: _angle_bf_output_deg (body frame angles in degrees)
void AP_Mount_Servo::stabilize()
// update body-frame angle outputs from earth-frame angle targets
void AP_Mount_Servo::update_angle_outputs(const MountTarget& angle_rad)
{
AP_AHRS &ahrs = AP::ahrs();
// only do the full 3D frame transform if we are doing pan control
const AP_AHRS &ahrs = AP::ahrs();
// only do the full 3D frame transform if we are stabilising yaw
if (_state._stab_pan) {
Matrix3f m; ///< holds 3 x 3 matrix, var is used as temp in calcs
Matrix3f cam; ///< Rotation matrix earth to camera. Desired camera from input.
Matrix3f gimbal_target; ///< Rotation matrix from plane to camera. Then Euler angles to the servos.
Matrix3f m; // 3 x 3 rotation matrix used as temporary variable in calculations
Matrix3f ef_to_cam; // rotation matrix from earth-frame to camera. Desired camera from input.
Matrix3f gimbal_target_bf; // rotation matrix from vehicle to camera then Euler angles to the servos
Vector3f gimbal_angle_bf_rad; // gimbal angle targets in body-frame euler angles
m = ahrs.get_rotation_body_to_ned();
m.transpose();
cam.from_euler(_angle_ef_target_rad.x, _angle_ef_target_rad.y, _angle_ef_target_rad.z);
gimbal_target = m * cam;
gimbal_target.to_euler(&_angle_bf_output_deg.x, &_angle_bf_output_deg.y, &_angle_bf_output_deg.z);
_angle_bf_output_deg.x = _state._stab_roll ? degrees(_angle_bf_output_deg.x) : degrees(_angle_ef_target_rad.x);
_angle_bf_output_deg.y = _state._stab_tilt ? degrees(_angle_bf_output_deg.y) : degrees(_angle_ef_target_rad.y);
_angle_bf_output_deg.z = degrees(_angle_bf_output_deg.z);
ef_to_cam.from_euler(angle_rad.roll, angle_rad.pitch, get_ef_yaw_angle(angle_rad));
gimbal_target_bf = m * ef_to_cam;
gimbal_target_bf.to_euler(&gimbal_angle_bf_rad.x, &gimbal_angle_bf_rad.y, &gimbal_angle_bf_rad.z);
_angle_bf_output_deg.x = _state._stab_roll ? degrees(gimbal_angle_bf_rad.x) : degrees(angle_rad.roll);
_angle_bf_output_deg.y = _state._stab_tilt ? degrees(gimbal_angle_bf_rad.y) : degrees(angle_rad.pitch);
_angle_bf_output_deg.z = degrees(gimbal_angle_bf_rad.z);
} else {
// otherwise base mount roll and tilt on the ahrs
// roll/tilt attitude, plus any requested angle
_angle_bf_output_deg.x = degrees(_angle_ef_target_rad.x);
_angle_bf_output_deg.y = degrees(_angle_ef_target_rad.y);
_angle_bf_output_deg.z = degrees(_angle_ef_target_rad.z);
// otherwise base roll and pitch on the ahrs roll and pitch angle plus any requested angle
_angle_bf_output_deg.x = degrees(angle_rad.roll);
_angle_bf_output_deg.y = degrees(angle_rad.pitch);
_angle_bf_output_deg.z = degrees(get_bf_yaw_angle(angle_rad));
if (_state._stab_roll) {
_angle_bf_output_deg.x -= degrees(ahrs.roll);
}

View File

@ -36,32 +36,21 @@ public:
// update mount position - should be called periodically
void update() override;
// has_pan_control - returns true if this mount can control it's pan (required for multicopters)
bool has_pan_control() const override { return _flags.pan_control; }
// returns true if this mount can control its pan (required for multicopters)
bool has_pan_control() const override;
// send_mount_status - called to allow mounts to send their status to GCS using the MOUNT_STATUS message
void send_mount_status(mavlink_channel_t chan) override;
private:
// flags structure
struct {
bool roll_control :1; // true if mount has roll control
bool tilt_control :1; // true if mount has tilt control
bool pan_control :1; // true if mount has pan control
} _flags;
// update body-frame angle outputs from earth-frame targets
void update_angle_outputs(const MountTarget& angle_rad);
// check_servo_map - detects which axis we control (i.e. _flags) using the functions assigned to the servos in the SRV_Channel
// should be called periodically (i.e. 1hz or less)
void check_servo_map();
// stabilize - stabilizes the mount relative to the Earth's frame
void stabilize();
// closest_limit - returns closest angle to 'angle' taking into account limits. all angles are in degrees * 10
// returns closest angle to 'angle' taking into account limits. all angles are in body-frame and degrees * 10
int16_t closest_limit(int16_t angle, int16_t angle_min, int16_t angle_max);
/// move_servo - moves servo with the given id to the specified angle. all angles are in degrees * 10
/// moves servo with the given function id to the specified angle. all angles are in body-frame and degrees * 10
void move_servo(uint8_t rc, int16_t angle, int16_t angle_min, int16_t angle_max);
// SRV_Channel - different id numbers are used depending upon the instance number
@ -70,8 +59,7 @@ private:
SRV_Channel::Aux_servo_function_t _pan_idx; // SRV_Channel mount pan function index
SRV_Channel::Aux_servo_function_t _open_idx; // SRV_Channel mount open function index
MountTarget _angle_rad; // angle target
Vector3f _angle_bf_output_deg; // final body frame output angle in degrees
uint32_t _last_check_servo_map_ms; // system time of latest call to check_servo_map function
};
#endif // HAL_MOUNT_SERVO_ENABLED