AP_Motors: Move traditional helicopter controls into AP_MotorsHeli_Single.
Original commit by fhedberg, had to fix merge conflicts and now it appears I did the commit?
This commit is contained in:
parent
af1eee44ee
commit
cde94078b7
@ -12,7 +12,7 @@
|
||||
#include "AP_MotorsY6.h"
|
||||
#include "AP_MotorsOcta.h"
|
||||
#include "AP_MotorsOctaQuad.h"
|
||||
#include "AP_MotorsHeli.h"
|
||||
#include "AP_MotorsHeli_Single.h"
|
||||
#include "AP_MotorsSingle.h"
|
||||
#include "AP_MotorsCoax.h"
|
||||
|
||||
|
@ -27,33 +27,6 @@ extern const AP_HAL::HAL& hal;
|
||||
|
||||
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
|
||||
// @Param: SV1_POS
|
||||
// @DisplayName: Servo 1 Position
|
||||
// @Description: Angular location of swash servo #1
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS),
|
||||
|
||||
// @Param: SV2_POS
|
||||
// @DisplayName: Servo 2 Position
|
||||
// @Description: Angular location of swash servo #2
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS),
|
||||
|
||||
// @Param: SV3_POS
|
||||
// @DisplayName: Servo 3 Position
|
||||
// @Description: Angular location of swash servo #3
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS),
|
||||
|
||||
// @Param: ROL_MAX
|
||||
// @DisplayName: Swash Roll Angle Max
|
||||
// @Description: Maximum roll angle of the swash plate
|
||||
@ -61,7 +34,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Centi-Degrees
|
||||
// @Increment: 100
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
|
||||
AP_GROUPINFO("ROL_MAX", 1, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX),
|
||||
|
||||
// @Param: PIT_MAX
|
||||
// @DisplayName: Swash Pitch Angle Max
|
||||
@ -70,7 +43,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: Centi-Degrees
|
||||
// @Increment: 100
|
||||
// @User: Advanced
|
||||
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
|
||||
AP_GROUPINFO("PIT_MAX", 2, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX),
|
||||
|
||||
// @Param: COL_MIN
|
||||
// @DisplayName: Collective Pitch Minimum
|
||||
@ -79,7 +52,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
|
||||
AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
|
||||
|
||||
// @Param: COL_MAX
|
||||
// @DisplayName: Collective Pitch Maximum
|
||||
@ -88,7 +61,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
|
||||
AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
|
||||
|
||||
// @Param: COL_MID
|
||||
// @DisplayName: Collective Pitch Mid-Point
|
||||
@ -97,53 +70,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
|
||||
|
||||
// @Param: TAIL_TYPE
|
||||
// @DisplayName: Tail Type
|
||||
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
|
||||
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("TAIL_TYPE",9, AP_MotorsHeli, _tail_type, AP_MOTORS_HELI_TAILTYPE_SERVO),
|
||||
|
||||
// @Param: SWASH_TYPE
|
||||
// @DisplayName: Swash Type
|
||||
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM),
|
||||
|
||||
// @Param: GYR_GAIN
|
||||
// @DisplayName: External Gyro Gain
|
||||
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
|
||||
// @Range: 0 1000
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, _ext_gyro_gain, AP_MOTORS_HELI_EXT_GYRO_GAIN),
|
||||
AP_GROUPINFO("COL_MID", 5, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID),
|
||||
|
||||
// @Param: SV_MAN
|
||||
// @DisplayName: Manual Servo Mode
|
||||
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually!
|
||||
// @Values: 0:Disabled,1:Enabled
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0),
|
||||
|
||||
// @Param: PHANG
|
||||
// @DisplayName: Swashplate Phase Angle Compensation
|
||||
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
// @Range: -90 90
|
||||
// @Units: Degrees
|
||||
// @User: Advanced
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0),
|
||||
|
||||
// @Param: COLYAW
|
||||
// @DisplayName: Collective-Yaw Mixing
|
||||
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
// @Range: -10 10
|
||||
// @Increment: 0.1
|
||||
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0),
|
||||
AP_GROUPINFO("SV_MAN", 7, AP_MotorsHeli, _servo_manual, 0),
|
||||
|
||||
// @Param: GOV_SETPOINT
|
||||
// @DisplayName: External Motor Governor Setpoint
|
||||
@ -152,21 +86,14 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: PWM
|
||||
// @Increment: 10
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_SETPOINT", 15, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
|
||||
AP_GROUPINFO("RSC_SETPOINT", 8, AP_MotorsHeli, _rsc_setpoint, AP_MOTORS_HELI_RSC_SETPOINT),
|
||||
|
||||
// @Param: RSC_MODE
|
||||
// @DisplayName: Rotor Speed Control Mode
|
||||
// @Description: Controls the source of the desired rotor speed, either ch8 or RSC_SETPOINT
|
||||
// @Values: 0:None, 1:Ch8 Input, 2:SetPoint
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
|
||||
|
||||
// @Param: FLYBAR_MODE
|
||||
// @DisplayName: Flybar Mode Selector
|
||||
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
// @Range: 0:NoFlybar 1:Flybar
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("FLYBAR_MODE", 17, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
|
||||
AP_GROUPINFO("RSC_MODE", 9, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH),
|
||||
|
||||
// @Param: LAND_COL_MIN
|
||||
// @DisplayName: Landing Collective Minimum
|
||||
@ -175,7 +102,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Units: pwm
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("LAND_COL_MIN", 18, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
|
||||
AP_GROUPINFO("LAND_COL_MIN", 10, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN),
|
||||
|
||||
// @Param: RSC_RAMP_TIME
|
||||
// @DisplayName: RSC Ramp Time
|
||||
@ -183,7 +110,7 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Range: 0 60
|
||||
// @Units: Seconds
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_RAMP_TIME", 19, AP_MotorsHeli,_rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
|
||||
AP_GROUPINFO("RSC_RAMP_TIME", 11, AP_MotorsHeli, _rsc_ramp_time, AP_MOTORS_HELI_RSC_RAMP_TIME),
|
||||
|
||||
// @Param: RSC_RUNUP_TIME
|
||||
// @DisplayName: RSC Runup Time
|
||||
@ -191,24 +118,15 @@ const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
|
||||
// @Range: 0 60
|
||||
// @Units: Seconds
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_RUNUP_TIME", 20, AP_MotorsHeli,_rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME),
|
||||
|
||||
// @Param: TAIL_SPEED
|
||||
// @DisplayName: Direct Drive VarPitch Tail ESC speed
|
||||
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
|
||||
// @Range: 0 1000
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("TAIL_SPEED", 21, AP_MotorsHeli, _direct_drive_tailspeed, AP_MOTOR_HELI_DDTAIL_DEFAULT),
|
||||
AP_GROUPINFO("RSC_RUNUP_TIME", 12, AP_MotorsHeli, _rsc_runup_time, AP_MOTORS_HELI_RSC_RUNUP_TIME),
|
||||
|
||||
// @Param: RSC_CRITICAL
|
||||
// @DisplayName: Critical Rotor Speed
|
||||
// @Description: Rotor speed below which flight is not possible
|
||||
// @Range: 0 1000
|
||||
// @Range: 0 0-1000
|
||||
// @Increment: 10
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("RSC_CRITICAL", 22, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL),
|
||||
AP_GROUPINFO("RSC_CRITICAL", 13, AP_MotorsHeli, _rsc_critical, AP_MOTORS_HELI_RSC_CRITICAL),
|
||||
|
||||
// parameters 1 ~ 29 reserved for tradheli
|
||||
// parameters 30 ~ 39 reserved for tricopter
|
||||
@ -235,37 +153,6 @@ void AP_MotorsHeli::Init()
|
||||
|
||||
// initialise swash plate
|
||||
init_swash();
|
||||
|
||||
// disable channels 7 and 8 from being used by RC_Channel_aux
|
||||
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_AUX]);
|
||||
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_RSC]);
|
||||
}
|
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
|
||||
{
|
||||
// record requested speed
|
||||
_speed_hz = speed_hz;
|
||||
|
||||
// setup fast channels
|
||||
uint32_t mask =
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]);
|
||||
hal.rcout->set_freq(mask, _speed_hz);
|
||||
}
|
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void AP_MotorsHeli::enable()
|
||||
{
|
||||
// enable output channels
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); // swash servo 1
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); // swash servo 2
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); // swash servo 3
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); // yaw
|
||||
hal.rcout->enable_ch(AP_MOTORS_HELI_AUX); // output for gyro gain or direct drive variable pitch tail motor
|
||||
hal.rcout->enable_ch(AP_MOTORS_HELI_RSC); // output for main rotor esc
|
||||
}
|
||||
|
||||
// output - sends commands to the servos
|
||||
@ -300,60 +187,6 @@ void AP_MotorsHeli::output_min()
|
||||
limit.throttle_upper = false;
|
||||
}
|
||||
|
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
||||
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
||||
void AP_MotorsHeli::output_test(uint8_t motor_seq, int16_t pwm)
|
||||
{
|
||||
// exit immediately if not armed
|
||||
if (!armed()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// output to motors and servos
|
||||
switch (motor_seq) {
|
||||
case 1:
|
||||
// swash servo 1
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
|
||||
break;
|
||||
case 2:
|
||||
// swash servo 2
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
|
||||
break;
|
||||
case 3:
|
||||
// swash servo 3
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
|
||||
break;
|
||||
case 4:
|
||||
// external gyro & tail servo
|
||||
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
|
||||
write_aux(_ext_gyro_gain);
|
||||
}
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
|
||||
break;
|
||||
case 5:
|
||||
// main rotor
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_HELI_RSC]), pwm);
|
||||
break;
|
||||
default:
|
||||
// do nothing
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// allow_arming - check if it's safe to arm
|
||||
bool AP_MotorsHeli::allow_arming() const
|
||||
{
|
||||
// returns false if main rotor speed is not zero
|
||||
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _main_rotor.get_estimated_speed() > 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// all other cases it is OK to arm
|
||||
return true;
|
||||
}
|
||||
|
||||
// parameter_check - check if helicopter specific parameters are sensible
|
||||
bool AP_MotorsHeli::parameter_check() const
|
||||
{
|
||||
@ -366,86 +199,18 @@ bool AP_MotorsHeli::parameter_check() const
|
||||
return true;
|
||||
}
|
||||
|
||||
// set_desired_rotor_speed
|
||||
void AP_MotorsHeli::set_desired_rotor_speed(int16_t desired_speed)
|
||||
{
|
||||
_main_rotor.set_desired_speed(desired_speed);
|
||||
|
||||
if (desired_speed > 0 && _tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.set_desired_speed(_direct_drive_tailspeed);
|
||||
} else {
|
||||
_tail_rotor.set_desired_speed(0);
|
||||
}
|
||||
}
|
||||
|
||||
// return true if the main rotor is up to speed
|
||||
bool AP_MotorsHeli::rotor_runup_complete() const
|
||||
{
|
||||
return _heliflags.rotor_runup_complete;
|
||||
}
|
||||
|
||||
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
||||
void AP_MotorsHeli::recalc_scalers()
|
||||
{
|
||||
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_SETPOINT) {
|
||||
_tail_rotor.set_ramp_time(0);
|
||||
_tail_rotor.set_runup_time(0);
|
||||
_tail_rotor.set_critical_speed(0);
|
||||
} else {
|
||||
_main_rotor.set_ramp_time(_rsc_ramp_time);
|
||||
_main_rotor.set_runup_time(_rsc_runup_time);
|
||||
_main_rotor.set_critical_speed(_rsc_critical);
|
||||
}
|
||||
|
||||
_main_rotor.recalc_scalers();
|
||||
|
||||
if (_rsc_mode != AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.set_ramp_time(0);
|
||||
_tail_rotor.set_runup_time(0);
|
||||
_tail_rotor.set_critical_speed(0);
|
||||
} else {
|
||||
_tail_rotor.set_ramp_time(_rsc_ramp_time);
|
||||
_tail_rotor.set_runup_time(_rsc_runup_time);
|
||||
_tail_rotor.set_critical_speed(_rsc_critical);
|
||||
}
|
||||
|
||||
_tail_rotor.recalc_scalers();
|
||||
}
|
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
||||
uint16_t AP_MotorsHeli::get_motor_mask()
|
||||
{
|
||||
// heli uses channels 1,2,3,4,7 and 8
|
||||
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_AUX | 1U << AP_MOTORS_HELI_RSC);
|
||||
}
|
||||
|
||||
void AP_MotorsHeli::output_armed_not_stabilizing()
|
||||
{
|
||||
// stabilizing servos always operate for helicopters
|
||||
output_armed_stabilizing();
|
||||
}
|
||||
|
||||
// sends commands to the motors
|
||||
void AP_MotorsHeli::output_armed_stabilizing()
|
||||
{
|
||||
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.output_armed();
|
||||
|
||||
if (!_tail_rotor.is_runup_complete())
|
||||
{
|
||||
_heliflags.rotor_runup_complete = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
_main_rotor.output_armed();
|
||||
|
||||
_heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
|
||||
}
|
||||
|
||||
// output_armed_zero_throttle - sends commands to the motors
|
||||
void AP_MotorsHeli::output_armed_zero_throttle()
|
||||
{
|
||||
@ -454,19 +219,6 @@ void AP_MotorsHeli::output_armed_zero_throttle()
|
||||
output_armed_stabilizing();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
void AP_MotorsHeli::output_disarmed()
|
||||
{
|
||||
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.output_disarmed();
|
||||
}
|
||||
|
||||
_main_rotor.output_disarmed();
|
||||
|
||||
_heliflags.rotor_runup_complete = false;
|
||||
}
|
||||
|
||||
// reset_swash - free up swash for maximum movements. Used for set-up
|
||||
void AP_MotorsHeli::reset_swash()
|
||||
@ -487,14 +239,6 @@ void AP_MotorsHeli::reset_swash()
|
||||
_heliflags.swash_initialised = false;
|
||||
}
|
||||
|
||||
// reset_servos
|
||||
void AP_MotorsHeli::reset_servos()
|
||||
{
|
||||
reset_swash_servo (_servo_1);
|
||||
reset_swash_servo (_servo_2);
|
||||
reset_swash_servo (_servo_3);
|
||||
}
|
||||
|
||||
// reset_swash_servo
|
||||
void AP_MotorsHeli::reset_swash_servo(RC_Channel& servo)
|
||||
{
|
||||
@ -531,16 +275,6 @@ void AP_MotorsHeli::init_swash()
|
||||
_heliflags.swash_initialised = true;
|
||||
}
|
||||
|
||||
// init_servos
|
||||
void AP_MotorsHeli::init_servos()
|
||||
{
|
||||
init_swash_servo (_servo_1);
|
||||
init_swash_servo (_servo_2);
|
||||
init_swash_servo (_servo_3);
|
||||
|
||||
_servo_4.set_angle(4500);
|
||||
}
|
||||
|
||||
// init_swash_servo
|
||||
void AP_MotorsHeli::init_swash_servo(RC_Channel& servo)
|
||||
{
|
||||
@ -550,197 +284,6 @@ void AP_MotorsHeli::init_swash_servo(RC_Channel& servo)
|
||||
servo.radio_max = 2000;
|
||||
}
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void AP_MotorsHeli::calculate_roll_pitch_collective_factors()
|
||||
{
|
||||
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle)));
|
||||
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle)));
|
||||
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle)));
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 1;
|
||||
_collectiveFactor[CH_2] = 1;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
|
||||
}else{ //H1 Swashplate, keep servo outputs seperated
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = 1;
|
||||
_rollFactor[CH_2] = 0;
|
||||
_rollFactor[CH_3] = 0;
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = 0;
|
||||
_pitchFactor[CH_2] = 1;
|
||||
_pitchFactor[CH_3] = 0;
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 0;
|
||||
_collectiveFactor[CH_2] = 0;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
||||
// - expected ranges:
|
||||
// roll : -4500 ~ 4500
|
||||
// pitch: -4500 ~ 4500
|
||||
// collective: 0 ~ 1000
|
||||
// yaw: -4500 ~ 4500
|
||||
//
|
||||
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
|
||||
{
|
||||
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
||||
if (_servo_manual == 1) {
|
||||
_roll_control_input = _roll_radio_passthrough;
|
||||
_pitch_control_input = _pitch_radio_passthrough;
|
||||
_throttle_control_input = _throttle_radio_passthrough;
|
||||
_yaw_control_input = _yaw_radio_passthrough;
|
||||
}
|
||||
|
||||
int16_t yaw_offset = 0;
|
||||
int16_t coll_out_scaled;
|
||||
|
||||
// initialize limits flag
|
||||
limit.roll_pitch = false;
|
||||
limit.yaw = false;
|
||||
limit.throttle_lower = false;
|
||||
limit.throttle_upper = false;
|
||||
|
||||
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
||||
// check if we need to free up the swash
|
||||
if (_heliflags.swash_initialised) {
|
||||
reset_swash();
|
||||
}
|
||||
// To-Do: This equation seems to be wrong. It probably restricts swash movement so that swash setup doesn't work right.
|
||||
// _collective_scalar should probably not be used or set to 1?
|
||||
coll_out_scaled = coll_in * _collective_scalar + _throttle_radio_min - 1000;
|
||||
}else{ // regular flight mode
|
||||
|
||||
// check if we need to reinitialise the swash
|
||||
if (!_heliflags.swash_initialised) {
|
||||
init_swash();
|
||||
}
|
||||
|
||||
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
|
||||
// across the input range instead of stopping when the input hits the constrain value
|
||||
// these calculations are based on an assumption of the user specified roll_max and pitch_max
|
||||
// coming into this equation at 4500 or less, and based on the original assumption of the
|
||||
// total _servo_x.servo_out range being -4500 to 4500.
|
||||
roll_out = roll_out * _roll_scaler;
|
||||
if (roll_out < -_roll_max) {
|
||||
roll_out = -_roll_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
if (roll_out > _roll_max) {
|
||||
roll_out = _roll_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
|
||||
// scale pitch and update limits
|
||||
pitch_out = pitch_out * _pitch_scaler;
|
||||
if (pitch_out < -_pitch_max) {
|
||||
pitch_out = -_pitch_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
if (pitch_out > _pitch_max) {
|
||||
pitch_out = _pitch_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
|
||||
// constrain collective input
|
||||
_collective_out = coll_in;
|
||||
if (_collective_out <= 0) {
|
||||
_collective_out = 0;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
if (_collective_out >= 1000) {
|
||||
_collective_out = 1000;
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
|
||||
// ensure not below landed/landing collective
|
||||
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
|
||||
_collective_out = _land_collective_min;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
|
||||
// scale collective pitch
|
||||
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
|
||||
|
||||
// rudder feed forward based on collective
|
||||
// the feed-forward is not required when the motor is shut down and not creating torque
|
||||
// also not required if we are using external gyro
|
||||
if ((_main_rotor.get_desired_speed() > 0) && _tail_type != AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
|
||||
// sanity check collective_yaw_effect
|
||||
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTOR_HELI_COLYAW_RANGE, AP_MOTOR_HELI_COLYAW_RANGE);
|
||||
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
|
||||
}
|
||||
}
|
||||
|
||||
// swashplate servos
|
||||
_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1.radio_trim-1500);
|
||||
_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2.radio_trim-1500);
|
||||
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) {
|
||||
_servo_1.servo_out += 500;
|
||||
_servo_2.servo_out += 500;
|
||||
}
|
||||
_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3.radio_trim-1500);
|
||||
|
||||
// use servo_out to calculate pwm_out and radio_out
|
||||
_servo_1.calc_pwm();
|
||||
_servo_2.calc_pwm();
|
||||
_servo_3.calc_pwm();
|
||||
|
||||
// actually move the servos
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo_1.radio_out);
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo_2.radio_out);
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo_3.radio_out);
|
||||
|
||||
// update the yaw rate using the tail rotor/servo
|
||||
output_yaw(yaw_out + yaw_offset);
|
||||
}
|
||||
|
||||
// output_yaw
|
||||
void AP_MotorsHeli::output_yaw(int16_t yaw_out)
|
||||
{
|
||||
_servo_4.servo_out = constrain_int16(yaw_out, -4500, 4500);
|
||||
|
||||
if (_servo_4.servo_out != yaw_out) {
|
||||
limit.yaw = true;
|
||||
}
|
||||
|
||||
_servo_4.calc_pwm();
|
||||
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo_4.radio_out);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) {
|
||||
// output gain to exernal gyro
|
||||
write_aux(_ext_gyro_gain);
|
||||
} else if (_tail_type == AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0) {
|
||||
// output yaw servo to tail rsc
|
||||
write_aux(_servo_4.servo_out);
|
||||
}
|
||||
}
|
||||
|
||||
// write_aux - outputs pwm onto output aux channel (ch7)
|
||||
// servo_out parameter is of the range 0 ~ 1000
|
||||
void AP_MotorsHeli::write_aux(int16_t servo_out)
|
||||
{
|
||||
_servo_aux.servo_out = servo_out;
|
||||
_servo_aux.calc_pwm();
|
||||
hal.rcout->write(AP_MOTORS_HELI_AUX, _servo_aux.radio_out);
|
||||
}
|
||||
|
||||
// set_delta_phase_angle for setting variable phase angle compensation and force
|
||||
// recalculation of collective factors
|
||||
void AP_MotorsHeli::set_delta_phase_angle(int16_t angle)
|
||||
|
@ -7,6 +7,7 @@
|
||||
#define __AP_MOTORS_HELI_H__
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#include <AP_Common/AP_Common.h>
|
||||
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
||||
#include <RC_Channel/RC_Channel.h> // RC Channel Library
|
||||
@ -21,19 +22,6 @@
|
||||
#define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos
|
||||
#define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
|
||||
|
||||
// TradHeli Aux Function Output Channels
|
||||
#define AP_MOTORS_HELI_AUX CH_7
|
||||
#define AP_MOTORS_HELI_RSC CH_8
|
||||
|
||||
// servo position defaults
|
||||
#define AP_MOTORS_HELI_SERVO1_POS -60
|
||||
#define AP_MOTORS_HELI_SERVO2_POS 60
|
||||
#define AP_MOTORS_HELI_SERVO3_POS 180
|
||||
|
||||
// swash type definitions
|
||||
#define AP_MOTORS_HELI_SWASH_CCPM 0
|
||||
#define AP_MOTORS_HELI_SWASH_H1 1
|
||||
|
||||
// default swash min and max angles and positions
|
||||
#define AP_MOTORS_HELI_SWASH_ROLL_MAX 2500
|
||||
#define AP_MOTORS_HELI_SWASH_PITCH_MAX 2500
|
||||
@ -48,21 +36,6 @@
|
||||
// swash min while landed or landing (as a number from 0 ~ 1000
|
||||
#define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0
|
||||
|
||||
// tail types
|
||||
#define AP_MOTORS_HELI_TAILTYPE_SERVO 0
|
||||
#define AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO 1
|
||||
#define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH 2
|
||||
#define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3
|
||||
|
||||
// default external gyro gain (ch7 out)
|
||||
#define AP_MOTORS_HELI_EXT_GYRO_GAIN 350
|
||||
|
||||
// minimum outputs for direct drive motors
|
||||
#define AP_MOTOR_HELI_DDTAIL_DEFAULT 500
|
||||
|
||||
// COLYAW parameter min and max values
|
||||
#define AP_MOTOR_HELI_COLYAW_RANGE 10.0f
|
||||
|
||||
// main rotor speed control types (ch8 out)
|
||||
#define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver, pilot controls ESC speed through transmitter directly
|
||||
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out), pilot desired rotor speed provided by CH8 input
|
||||
@ -77,7 +50,6 @@
|
||||
// default main rotor ramp up time in seconds
|
||||
#define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly)
|
||||
#define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed
|
||||
#define AP_MOTORS_HELI_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000)
|
||||
|
||||
// flybar types
|
||||
#define AP_MOTORS_HELI_NOFLYBAR 0
|
||||
@ -90,23 +62,9 @@ class AP_MotorsHeli : public AP_Motors {
|
||||
public:
|
||||
|
||||
/// Constructor
|
||||
AP_MotorsHeli( RC_Channel& servo_aux,
|
||||
RC_Channel& servo_rotor,
|
||||
RC_Channel& swash_servo_1,
|
||||
RC_Channel& swash_servo_2,
|
||||
RC_Channel& swash_servo_3,
|
||||
RC_Channel& yaw_servo,
|
||||
uint16_t loop_rate,
|
||||
AP_MotorsHeli( uint16_t loop_rate,
|
||||
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
|
||||
AP_Motors(loop_rate, speed_hz),
|
||||
_servo_aux(servo_aux),
|
||||
_servo_rsc(servo_rotor),
|
||||
_servo_1(swash_servo_1),
|
||||
_servo_2(swash_servo_2),
|
||||
_servo_3(swash_servo_3),
|
||||
_servo_4(yaw_servo),
|
||||
_main_rotor(servo_rotor, AP_MOTORS_HELI_RSC, loop_rate),
|
||||
_tail_rotor(servo_aux, AP_MOTORS_HELI_AUX, loop_rate)
|
||||
AP_Motors(loop_rate, speed_hz)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
|
||||
@ -121,10 +79,10 @@ public:
|
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
// you must have setup_motors before calling this
|
||||
void set_update_rate( uint16_t speed_hz );
|
||||
virtual void set_update_rate( uint16_t speed_hz ) = 0;
|
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void enable();
|
||||
virtual void enable() = 0;
|
||||
|
||||
// output_min - sets servos to neutral point
|
||||
void output_min();
|
||||
@ -132,7 +90,7 @@ public:
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
||||
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
||||
virtual void output_test(uint8_t motor_seq, int16_t pwm);
|
||||
virtual void output_test(uint8_t motor_seq, int16_t pwm) = 0;
|
||||
|
||||
// slow_start - ignored by helicopters
|
||||
void slow_start(bool true_false) {};
|
||||
@ -142,20 +100,13 @@ public:
|
||||
//
|
||||
|
||||
// allow_arming - returns true if main rotor is spinning and it is ok to arm
|
||||
bool allow_arming() const;
|
||||
virtual bool allow_arming() const = 0;
|
||||
|
||||
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
|
||||
bool parameter_check() const;
|
||||
|
||||
// _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch)
|
||||
int16_t tail_type() const { return _tail_type; }
|
||||
|
||||
// ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000)
|
||||
int16_t ext_gyro_gain() const { return _ext_gyro_gain; }
|
||||
void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain = pwm; }
|
||||
|
||||
// has_flybar - returns true if we have a mechical flybar
|
||||
bool has_flybar() const { return _flybar_mode; }
|
||||
virtual bool has_flybar() const { return AP_MOTORS_HELI_NOFLYBAR; }
|
||||
|
||||
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
|
||||
int16_t get_collective_mid() const { return _collective_mid; }
|
||||
@ -173,25 +124,22 @@ public:
|
||||
int16_t get_rsc_setpoint() const { return _rsc_setpoint; }
|
||||
|
||||
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
|
||||
void set_desired_rotor_speed(int16_t desired_speed);
|
||||
virtual void set_desired_rotor_speed(int16_t desired_speed) = 0;
|
||||
|
||||
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
|
||||
int16_t get_desired_rotor_speed() const { return _main_rotor.get_desired_speed(); }
|
||||
virtual int16_t get_desired_rotor_speed() const = 0;
|
||||
|
||||
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
|
||||
int16_t get_estimated_rotor_speed() { return _main_rotor.get_estimated_speed(); }
|
||||
virtual int16_t get_estimated_rotor_speed() const = 0;
|
||||
|
||||
// return true if the main rotor is up to speed
|
||||
bool rotor_runup_complete() const;
|
||||
|
||||
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
|
||||
bool rotor_speed_above_critical() const { return _main_rotor.get_estimated_speed() > _main_rotor.get_critical_speed(); }
|
||||
virtual bool rotor_speed_above_critical() const = 0;
|
||||
|
||||
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
||||
void recalc_scalers();
|
||||
|
||||
// get_phase_angle - returns phase angle
|
||||
int16_t get_phase_angle() const { return _phase_angle; }
|
||||
virtual void recalc_scalers() = 0;
|
||||
|
||||
// var_info for holding Parameter information
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
@ -202,7 +150,7 @@ public:
|
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
||||
virtual uint16_t get_motor_mask();
|
||||
virtual uint16_t get_motor_mask() = 0;
|
||||
|
||||
// set_radio_passthrough used to pass radio inputs directly to outputs
|
||||
void set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input);
|
||||
@ -213,28 +161,28 @@ public:
|
||||
// output - sends commands to the motors
|
||||
void output();
|
||||
|
||||
// supports_yaw_passthrough
|
||||
virtual bool supports_yaw_passthrough() const { return false; }
|
||||
|
||||
protected:
|
||||
|
||||
// output - sends commands to the motors
|
||||
void output_armed_stabilizing();
|
||||
virtual void output_armed_stabilizing() = 0;
|
||||
void output_armed_not_stabilizing();
|
||||
void output_armed_zero_throttle();
|
||||
void output_disarmed();
|
||||
void output_yaw(int16_t yaw_out);
|
||||
virtual void output_disarmed() = 0;
|
||||
|
||||
// update the throttle input filter
|
||||
void update_throttle_filter();
|
||||
|
||||
private:
|
||||
|
||||
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
||||
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
|
||||
virtual void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out) = 0;
|
||||
|
||||
// reset_swash - free up swash for maximum movements. Used for set-up
|
||||
void reset_swash();
|
||||
|
||||
// reset_servos - free up the swash servos for maximum movement
|
||||
void reset_servos();
|
||||
virtual void reset_servos() = 0;
|
||||
|
||||
// reset_swash_servo - free up swash servo for maximum movement
|
||||
static void reset_swash_servo(RC_Channel& servo);
|
||||
@ -243,27 +191,13 @@ private:
|
||||
void init_swash();
|
||||
|
||||
// init_servos - initialize the servos
|
||||
void init_servos();
|
||||
virtual void init_servos() = 0;
|
||||
|
||||
// init_swash_servo - initialize a swash servo
|
||||
static void init_swash_servo(RC_Channel& servo);
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void calculate_roll_pitch_collective_factors();
|
||||
|
||||
// write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000
|
||||
void write_aux(int16_t servo_out);
|
||||
|
||||
// external objects we depend upon
|
||||
RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7)
|
||||
RC_Channel& _servo_rsc; // output to main rotor esc (ch8)
|
||||
RC_Channel& _servo_1; // swash plate servo #1
|
||||
RC_Channel& _servo_2; // swash plate servo #2
|
||||
RC_Channel& _servo_3; // swash plate servo #3
|
||||
RC_Channel& _servo_4; // tail servo
|
||||
|
||||
AP_MotorsHeli_RSC _main_rotor; // main rotor
|
||||
AP_MotorsHeli_RSC _tail_rotor; // tail rotor
|
||||
virtual void calculate_roll_pitch_collective_factors() = 0;
|
||||
|
||||
// flags bitmask
|
||||
struct heliflags_type {
|
||||
@ -273,27 +207,17 @@ private:
|
||||
} _heliflags;
|
||||
|
||||
// parameters
|
||||
AP_Int16 _servo1_pos; // Angular location of swash servo #1
|
||||
AP_Int16 _servo2_pos; // Angular location of swash servo #2
|
||||
AP_Int16 _servo3_pos; // Angular location of swash servo #3
|
||||
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
|
||||
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
|
||||
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
|
||||
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
|
||||
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
|
||||
AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch
|
||||
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
AP_Int16 _ext_gyro_gain; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
|
||||
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
|
||||
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv
|
||||
AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active
|
||||
AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed
|
||||
AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time
|
||||
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
AP_Int16 _land_collective_min; // Minimum collective when landed or landing
|
||||
AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000)
|
||||
AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible
|
||||
|
||||
// internal variables
|
||||
|
498
libraries/AP_Motors/AP_MotorsHeli_Single.cpp
Normal file
498
libraries/AP_Motors/AP_MotorsHeli_Single.cpp
Normal file
@ -0,0 +1,498 @@
|
||||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
/*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <AP_HAL.h>
|
||||
#include "AP_MotorsHeli_Single.h"
|
||||
|
||||
extern const AP_HAL::HAL& hal;
|
||||
|
||||
const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] PROGMEM = {
|
||||
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
|
||||
|
||||
// @Param: SV1_POS
|
||||
// @DisplayName: Servo 1 Position
|
||||
// @Description: Angular location of swash servo #1
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS),
|
||||
|
||||
// @Param: SV2_POS
|
||||
// @DisplayName: Servo 2 Position
|
||||
// @Description: Angular location of swash servo #2
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS),
|
||||
|
||||
// @Param: SV3_POS
|
||||
// @DisplayName: Servo 3 Position
|
||||
// @Description: Angular location of swash servo #3
|
||||
// @Range: -180 180
|
||||
// @Units: Degrees
|
||||
// @User: Standard
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS),
|
||||
|
||||
// @Param: TAIL_TYPE
|
||||
// @DisplayName: Tail Type
|
||||
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
|
||||
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO),
|
||||
|
||||
// @Param: SWASH_TYPE
|
||||
// @DisplayName: Swash Type
|
||||
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM),
|
||||
|
||||
// @Param: GYR_GAIN
|
||||
// @DisplayName: External Gyro Gain
|
||||
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
|
||||
// @Range: 0 1000
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN),
|
||||
|
||||
// @Param: PHANG
|
||||
// @DisplayName: Swashplate Phase Angle Compensation
|
||||
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
// @Range: -90 90
|
||||
// @Units: Degrees
|
||||
// @User: Advanced
|
||||
// @Increment: 1
|
||||
AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0),
|
||||
|
||||
// @Param: COLYAW
|
||||
// @DisplayName: Collective-Yaw Mixing
|
||||
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
// @Range: -10 10
|
||||
// @Increment: 0.1
|
||||
AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0),
|
||||
|
||||
// @Param: FLYBAR_MODE
|
||||
// @DisplayName: Flybar Mode Selector
|
||||
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
// @Range: 0:NoFlybar 1:Flybar
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
|
||||
|
||||
// @Param: TAIL_SPEED
|
||||
// @DisplayName: Direct Drive VarPitch Tail ESC speed
|
||||
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
|
||||
// @Range: 0 1000
|
||||
// @Units: PWM
|
||||
// @Increment: 1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTOR_HELI_SINGLE_DDTAIL_DEFAULT),
|
||||
|
||||
AP_GROUPEND
|
||||
};
|
||||
|
||||
//
|
||||
// public methods
|
||||
//
|
||||
|
||||
// init
|
||||
void AP_MotorsHeli_Single::Init()
|
||||
{
|
||||
AP_MotorsHeli::Init();
|
||||
|
||||
// disable channels 7 and 8 from being used by RC_Channel_aux
|
||||
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_AUX]);
|
||||
RC_Channel_aux::disable_aux_channel(_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_RSC]);
|
||||
}
|
||||
|
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz )
|
||||
{
|
||||
// record requested speed
|
||||
_speed_hz = speed_hz;
|
||||
|
||||
// setup fast channels
|
||||
uint32_t mask =
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]) |
|
||||
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]);
|
||||
hal.rcout->set_freq(mask, _speed_hz);
|
||||
}
|
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void AP_MotorsHeli_Single::enable()
|
||||
{
|
||||
// enable output channels
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1])); // swash servo 1
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2])); // swash servo 2
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3])); // swash servo 3
|
||||
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4])); // yaw
|
||||
hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_AUX); // output for gyro gain or direct drive variable pitch tail motor
|
||||
hal.rcout->enable_ch(AP_MOTORS_HELI_SINGLE_RSC); // output for main rotor esc
|
||||
}
|
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
||||
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
||||
void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm)
|
||||
{
|
||||
// exit immediately if not armed
|
||||
if (!armed()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// output to motors and servos
|
||||
switch (motor_seq) {
|
||||
case 1:
|
||||
// swash servo 1
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
|
||||
break;
|
||||
case 2:
|
||||
// swash servo 2
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
|
||||
break;
|
||||
case 3:
|
||||
// swash servo 3
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), pwm);
|
||||
break;
|
||||
case 4:
|
||||
// external gyro & tail servo
|
||||
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
||||
write_aux(_ext_gyro_gain);
|
||||
}
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
|
||||
break;
|
||||
case 5:
|
||||
// main rotor
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_HELI_SINGLE_RSC]), pwm);
|
||||
break;
|
||||
default:
|
||||
// do nothing
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// allow_arming - check if it's safe to arm
|
||||
bool AP_MotorsHeli_Single::allow_arming() const
|
||||
{
|
||||
// returns false if main rotor speed is not zero
|
||||
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _main_rotor.get_estimated_speed() > 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// all other cases it is OK to arm
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// set_desired_rotor_speed
|
||||
void AP_MotorsHeli_Single::set_desired_rotor_speed(int16_t desired_speed)
|
||||
{
|
||||
_main_rotor.set_desired_speed(desired_speed);
|
||||
|
||||
if (desired_speed > 0 && _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.set_desired_speed(_direct_drive_tailspeed);
|
||||
} else {
|
||||
_tail_rotor.set_desired_speed(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
||||
void AP_MotorsHeli_Single::recalc_scalers()
|
||||
{
|
||||
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_SETPOINT) {
|
||||
_tail_rotor.set_ramp_time(0);
|
||||
_tail_rotor.set_runup_time(0);
|
||||
_tail_rotor.set_critical_speed(0);
|
||||
} else {
|
||||
_main_rotor.set_ramp_time(_rsc_ramp_time);
|
||||
_main_rotor.set_runup_time(_rsc_runup_time);
|
||||
_main_rotor.set_critical_speed(_rsc_critical);
|
||||
}
|
||||
|
||||
_main_rotor.recalc_scalers();
|
||||
|
||||
if (_rsc_mode != AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.set_ramp_time(0);
|
||||
_tail_rotor.set_runup_time(0);
|
||||
_tail_rotor.set_critical_speed(0);
|
||||
} else {
|
||||
_tail_rotor.set_ramp_time(_rsc_ramp_time);
|
||||
_tail_rotor.set_runup_time(_rsc_runup_time);
|
||||
_tail_rotor.set_critical_speed(_rsc_critical);
|
||||
}
|
||||
|
||||
_tail_rotor.recalc_scalers();
|
||||
}
|
||||
|
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
||||
uint16_t AP_MotorsHeli_Single::get_motor_mask()
|
||||
{
|
||||
// heli uses channels 1,2,3,4,7 and 8
|
||||
return (1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC);
|
||||
}
|
||||
|
||||
// sends commands to the motors
|
||||
void AP_MotorsHeli_Single::output_armed_stabilizing()
|
||||
{
|
||||
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.output_armed();
|
||||
|
||||
if (!_tail_rotor.is_runup_complete())
|
||||
{
|
||||
_heliflags.rotor_runup_complete = false;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
_main_rotor.output_armed();
|
||||
|
||||
_heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
|
||||
}
|
||||
|
||||
// output_disarmed - sends commands to the motors
|
||||
void AP_MotorsHeli_Single::output_disarmed()
|
||||
{
|
||||
move_swash(_roll_control_input, _pitch_control_input, _throttle_control_input, _yaw_control_input);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
|
||||
_tail_rotor.output_disarmed();
|
||||
}
|
||||
|
||||
_main_rotor.output_disarmed();
|
||||
|
||||
_heliflags.rotor_runup_complete = false;
|
||||
}
|
||||
|
||||
// reset_servos
|
||||
void AP_MotorsHeli_Single::reset_servos()
|
||||
{
|
||||
reset_swash_servo (_servo_1);
|
||||
reset_swash_servo (_servo_2);
|
||||
reset_swash_servo (_servo_3);
|
||||
}
|
||||
|
||||
// init_servos
|
||||
void AP_MotorsHeli_Single::init_servos()
|
||||
{
|
||||
init_swash_servo (_servo_1);
|
||||
init_swash_servo (_servo_2);
|
||||
init_swash_servo (_servo_3);
|
||||
|
||||
_servo_4.set_angle(4500);
|
||||
}
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors()
|
||||
{
|
||||
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle)));
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle)));
|
||||
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle)));
|
||||
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle)));
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 1;
|
||||
_collectiveFactor[CH_2] = 1;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
|
||||
}else{ //H1 Swashplate, keep servo outputs seperated
|
||||
|
||||
// roll factors
|
||||
_rollFactor[CH_1] = 1;
|
||||
_rollFactor[CH_2] = 0;
|
||||
_rollFactor[CH_3] = 0;
|
||||
|
||||
// pitch factors
|
||||
_pitchFactor[CH_1] = 0;
|
||||
_pitchFactor[CH_2] = 1;
|
||||
_pitchFactor[CH_3] = 0;
|
||||
|
||||
// collective factors
|
||||
_collectiveFactor[CH_1] = 0;
|
||||
_collectiveFactor[CH_2] = 0;
|
||||
_collectiveFactor[CH_3] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
||||
// - expected ranges:
|
||||
// roll : -4500 ~ 4500
|
||||
// pitch: -4500 ~ 4500
|
||||
// collective: 0 ~ 1000
|
||||
// yaw: -4500 ~ 4500
|
||||
//
|
||||
void AP_MotorsHeli_Single::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
|
||||
{
|
||||
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
|
||||
if (_servo_manual == 1) {
|
||||
_roll_control_input = _roll_radio_passthrough;
|
||||
_pitch_control_input = _pitch_radio_passthrough;
|
||||
_throttle_control_input = _throttle_radio_passthrough;
|
||||
_yaw_control_input = _yaw_radio_passthrough;
|
||||
}
|
||||
|
||||
int16_t yaw_offset = 0;
|
||||
int16_t coll_out_scaled;
|
||||
|
||||
// initialize limits flag
|
||||
limit.roll_pitch = false;
|
||||
limit.yaw = false;
|
||||
limit.throttle_lower = false;
|
||||
limit.throttle_upper = false;
|
||||
|
||||
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)?
|
||||
// check if we need to free up the swash
|
||||
if (_heliflags.swash_initialised) {
|
||||
reset_swash();
|
||||
}
|
||||
// To-Do: This equation seems to be wrong. It probably restricts swash movement so that swash setup doesn't work right.
|
||||
// _collective_scalar should probably not be used or set to 1?
|
||||
coll_out_scaled = coll_in * _collective_scalar + _throttle_radio_min - 1000;
|
||||
}else{ // regular flight mode
|
||||
|
||||
// check if we need to reinitialise the swash
|
||||
if (!_heliflags.swash_initialised) {
|
||||
init_swash();
|
||||
}
|
||||
|
||||
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
|
||||
// across the input range instead of stopping when the input hits the constrain value
|
||||
// these calculations are based on an assumption of the user specified roll_max and pitch_max
|
||||
// coming into this equation at 4500 or less, and based on the original assumption of the
|
||||
// total _servo_x.servo_out range being -4500 to 4500.
|
||||
roll_out = roll_out * _roll_scaler;
|
||||
if (roll_out < -_roll_max) {
|
||||
roll_out = -_roll_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
if (roll_out > _roll_max) {
|
||||
roll_out = _roll_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
|
||||
// scale pitch and update limits
|
||||
pitch_out = pitch_out * _pitch_scaler;
|
||||
if (pitch_out < -_pitch_max) {
|
||||
pitch_out = -_pitch_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
if (pitch_out > _pitch_max) {
|
||||
pitch_out = _pitch_max;
|
||||
limit.roll_pitch = true;
|
||||
}
|
||||
|
||||
// constrain collective input
|
||||
_collective_out = coll_in;
|
||||
if (_collective_out <= 0) {
|
||||
_collective_out = 0;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
if (_collective_out >= 1000) {
|
||||
_collective_out = 1000;
|
||||
limit.throttle_upper = true;
|
||||
}
|
||||
|
||||
// ensure not below landed/landing collective
|
||||
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
|
||||
_collective_out = _land_collective_min;
|
||||
limit.throttle_lower = true;
|
||||
}
|
||||
|
||||
// scale collective pitch
|
||||
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
|
||||
|
||||
// rudder feed forward based on collective
|
||||
// the feed-forward is not required when the motor is shut down and not creating torque
|
||||
// also not required if we are using external gyro
|
||||
if ((_main_rotor.get_desired_speed() > 0) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
||||
// sanity check collective_yaw_effect
|
||||
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
|
||||
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
|
||||
}
|
||||
}
|
||||
|
||||
// swashplate servos
|
||||
_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1.radio_trim-1500);
|
||||
_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2.radio_trim-1500);
|
||||
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) {
|
||||
_servo_1.servo_out += 500;
|
||||
_servo_2.servo_out += 500;
|
||||
}
|
||||
_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3.radio_trim-1500);
|
||||
|
||||
// use servo_out to calculate pwm_out and radio_out
|
||||
_servo_1.calc_pwm();
|
||||
_servo_2.calc_pwm();
|
||||
_servo_3.calc_pwm();
|
||||
|
||||
// actually move the servos
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _servo_1.radio_out);
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _servo_2.radio_out);
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_3]), _servo_3.radio_out);
|
||||
|
||||
// update the yaw rate using the tail rotor/servo
|
||||
output_yaw(yaw_out + yaw_offset);
|
||||
}
|
||||
|
||||
// output_yaw
|
||||
void AP_MotorsHeli_Single::output_yaw(int16_t yaw_out)
|
||||
{
|
||||
_servo_4.servo_out = constrain_int16(yaw_out, -4500, 4500);
|
||||
|
||||
if (_servo_4.servo_out != yaw_out) {
|
||||
limit.yaw = true;
|
||||
}
|
||||
|
||||
_servo_4.calc_pwm();
|
||||
|
||||
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _servo_4.radio_out);
|
||||
|
||||
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
|
||||
// output gain to exernal gyro
|
||||
write_aux(_ext_gyro_gain);
|
||||
} else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0) {
|
||||
// output yaw servo to tail rsc
|
||||
write_aux(_servo_4.servo_out);
|
||||
}
|
||||
}
|
||||
|
||||
// write_aux - outputs pwm onto output aux channel (ch7)
|
||||
// servo_out parameter is of the range 0 ~ 1000
|
||||
void AP_MotorsHeli_Single::write_aux(int16_t servo_out)
|
||||
{
|
||||
_servo_aux.servo_out = servo_out;
|
||||
_servo_aux.calc_pwm();
|
||||
hal.rcout->write(AP_MOTORS_HELI_SINGLE_AUX, _servo_aux.radio_out);
|
||||
}
|
173
libraries/AP_Motors/AP_MotorsHeli_Single.h
Normal file
173
libraries/AP_Motors/AP_MotorsHeli_Single.h
Normal file
@ -0,0 +1,173 @@
|
||||
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||||
|
||||
/// @file AP_MotorsHeli_Single.h
|
||||
/// @brief Motor control class for traditional heli
|
||||
|
||||
#ifndef __AP_MOTORS_HELI_SINGLE_H__
|
||||
#define __AP_MOTORS_HELI_SINGLE_H__
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <AP_Common.h>
|
||||
#include <AP_Math.h>
|
||||
#include <RC_Channel.h>
|
||||
|
||||
#include "AP_MotorsHeli.h"
|
||||
#include "AP_MotorsHeli_RSC.h"
|
||||
|
||||
// rsc and aux function output channels
|
||||
#define AP_MOTORS_HELI_SINGLE_RSC CH_8
|
||||
#define AP_MOTORS_HELI_SINGLE_AUX CH_7
|
||||
|
||||
// servo position defaults
|
||||
#define AP_MOTORS_HELI_SINGLE_SERVO1_POS -60
|
||||
#define AP_MOTORS_HELI_SINGLE_SERVO2_POS 60
|
||||
#define AP_MOTORS_HELI_SINGLE_SERVO3_POS 180
|
||||
|
||||
// swash type definitions
|
||||
#define AP_MOTORS_HELI_SINGLE_SWASH_CCPM 0
|
||||
#define AP_MOTORS_HELI_SINGLE_SWASH_H1 1
|
||||
|
||||
// tail types
|
||||
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO 0
|
||||
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO 1
|
||||
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH 2
|
||||
#define AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3
|
||||
|
||||
// default direct-drive variable pitch speed
|
||||
#define AP_MOTOR_HELI_SINGLE_DDTAIL_DEFAULT 500
|
||||
|
||||
// default external gyro gain
|
||||
#define AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN 350
|
||||
|
||||
// COLYAW parameter min and max values
|
||||
#define AP_MOTORS_HELI_SINGLE_COLYAW_RANGE 10.0f
|
||||
|
||||
#define AP_MOTORS_HELI_SINGLE_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000)
|
||||
|
||||
/// @class AP_MotorsHeli_Single
|
||||
class AP_MotorsHeli_Single : public AP_MotorsHeli {
|
||||
public:
|
||||
// constructor
|
||||
AP_MotorsHeli_Single(RC_Channel& servo_aux,
|
||||
RC_Channel& servo_rsc,
|
||||
RC_Channel& servo_1,
|
||||
RC_Channel& servo_2,
|
||||
RC_Channel& servo_3,
|
||||
RC_Channel& servo_4,
|
||||
uint16_t loop_rate,
|
||||
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
|
||||
AP_MotorsHeli(loop_rate, speed_hz),
|
||||
_servo_aux(servo_aux),
|
||||
_servo_1(servo_1),
|
||||
_servo_2(servo_2),
|
||||
_servo_3(servo_3),
|
||||
_servo_4(servo_4),
|
||||
_main_rotor(servo_rsc, AP_MOTORS_HELI_SINGLE_RSC, loop_rate),
|
||||
_tail_rotor(servo_aux, AP_MOTORS_HELI_SINGLE_AUX, loop_rate)
|
||||
{
|
||||
AP_Param::setup_object_defaults(this, var_info);
|
||||
};
|
||||
|
||||
// init
|
||||
void Init();
|
||||
|
||||
// set update rate to motors - a value in hertz
|
||||
// you must have setup_motors before calling this
|
||||
void set_update_rate(uint16_t speed_hz);
|
||||
|
||||
// enable - starts allowing signals to be sent to motors
|
||||
void enable();
|
||||
|
||||
// output_test - spin a motor at the pwm value specified
|
||||
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
||||
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
||||
void output_test(uint8_t motor_seq, int16_t pwm);
|
||||
|
||||
// allow_arming - returns true if main rotor is spinning and it is ok to arm
|
||||
bool allow_arming() const;
|
||||
|
||||
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
|
||||
void set_desired_rotor_speed(int16_t desired_speed);
|
||||
|
||||
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
|
||||
int16_t get_estimated_rotor_speed() const { return _main_rotor.get_estimated_speed(); }
|
||||
|
||||
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
|
||||
int16_t get_desired_rotor_speed() const { return _main_rotor.get_desired_speed(); }
|
||||
|
||||
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
|
||||
bool rotor_speed_above_critical() const { return _main_rotor.get_estimated_speed() > _main_rotor.get_critical_speed(); }
|
||||
|
||||
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
|
||||
void recalc_scalers();
|
||||
|
||||
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
||||
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
||||
uint16_t get_motor_mask();
|
||||
|
||||
// _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch)
|
||||
int16_t tail_type() const { return _tail_type; }
|
||||
|
||||
// ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000)
|
||||
int16_t ext_gyro_gain() const { return _ext_gyro_gain; }
|
||||
void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain = pwm; }
|
||||
|
||||
// has_flybar - returns true if we have a mechical flybar
|
||||
bool has_flybar() const { return _flybar_mode; }
|
||||
|
||||
// get_phase_angle - returns phase angle
|
||||
int16_t get_phase_angle() const { return _phase_angle; }
|
||||
|
||||
// supports_yaw_passthrought - returns true if we support yaw passthrough
|
||||
bool supports_yaw_passthrough() const { return _tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO; }
|
||||
|
||||
// var_info
|
||||
static const struct AP_Param::GroupInfo var_info[];
|
||||
|
||||
protected:
|
||||
|
||||
// output - sends commands to the motors
|
||||
void output_armed_stabilizing();
|
||||
void output_disarmed();
|
||||
void output_yaw(int16_t yaw_out);
|
||||
|
||||
// reset_servos - free up the swash servos for maximum movement
|
||||
void reset_servos();
|
||||
|
||||
// init_servos - initialize the servos
|
||||
void init_servos();
|
||||
|
||||
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
|
||||
void calculate_roll_pitch_collective_factors();
|
||||
|
||||
// heli_move_swash - moves swash plate to attitude of parameters passed in
|
||||
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
|
||||
|
||||
// write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000
|
||||
void write_aux(int16_t servo_out);
|
||||
|
||||
// external objects we depend upon
|
||||
RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7)
|
||||
RC_Channel& _servo_1; // swash plate servo #1
|
||||
RC_Channel& _servo_2; // swash plate servo #2
|
||||
RC_Channel& _servo_3; // swash plate servo #3
|
||||
RC_Channel& _servo_4; // tail servo
|
||||
|
||||
AP_MotorsHeli_RSC _main_rotor; // main rotor
|
||||
AP_MotorsHeli_RSC _tail_rotor; // tail rotor
|
||||
|
||||
// parameters
|
||||
AP_Int16 _servo1_pos; // Angular location of swash servo #1
|
||||
AP_Int16 _servo2_pos; // Angular location of swash servo #2
|
||||
AP_Int16 _servo3_pos; // Angular location of swash servo #3
|
||||
AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch
|
||||
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
|
||||
AP_Int16 _ext_gyro_gain; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
|
||||
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
|
||||
AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
|
||||
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
|
||||
AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000)
|
||||
|
||||
};
|
||||
|
||||
#endif // __AP_MOTORS_HELI_SINGLE_H__
|
Loading…
Reference in New Issue
Block a user