AP_Mount: factor out a rate_input_rad, const various functions

This commit is contained in:
Peter Barker 2018-10-13 18:41:11 +11:00 committed by Andrew Tridgell
parent dcd930497a
commit c73beffe1b
2 changed files with 40 additions and 29 deletions

View File

@ -80,53 +80,60 @@ void AP_Mount_Backend::control(int32_t pitch_or_lat, int32_t roll_or_lon, int32_
} }
} }
void AP_Mount_Backend::rate_input_rad(float &out, const RC_Channel *ch, float min, float max) const
{
if (ch == nullptr) {
return;
}
out += ch->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
out = constrain_float(out, radians(min*0.01f), radians(max*0.01f));
}
// update_targets_from_rc - updates angle targets using input from receiver // update_targets_from_rc - updates angle targets using input from receiver
void AP_Mount_Backend::update_targets_from_rc() void AP_Mount_Backend::update_targets_from_rc()
{ {
#define rc_ch(i) rc().channel(i-1) const RC_Channel *roll_ch = rc().channel(_state._roll_rc_in - 1);
const RC_Channel *tilt_ch = rc().channel(_state._tilt_rc_in - 1);
uint8_t roll_rc_in = _state._roll_rc_in; const RC_Channel *pan_ch = rc().channel(_state._pan_rc_in - 1);
uint8_t tilt_rc_in = _state._tilt_rc_in;
uint8_t pan_rc_in = _state._pan_rc_in;
// if joystick_speed is defined then pilot input defines a rate of change of the angle // if joystick_speed is defined then pilot input defines a rate of change of the angle
if (_frontend._joystick_speed) { if (_frontend._joystick_speed) {
// allow pilot speed position input to come directly from an RC_Channel
if (roll_rc_in && rc_ch(roll_rc_in)) {
_angle_ef_target_rad.x += rc_ch(roll_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
_angle_ef_target_rad.x = constrain_float(_angle_ef_target_rad.x, radians(_state._roll_angle_min*0.01f), radians(_state._roll_angle_max*0.01f));
}
if (tilt_rc_in && (rc_ch(tilt_rc_in))) {
_angle_ef_target_rad.y += rc_ch(tilt_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
_angle_ef_target_rad.y = constrain_float(_angle_ef_target_rad.y, radians(_state._tilt_angle_min*0.01f), radians(_state._tilt_angle_max*0.01f));
}
if (pan_rc_in && (rc_ch(pan_rc_in))) {
_angle_ef_target_rad.z += rc_ch(pan_rc_in)->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
_angle_ef_target_rad.z = constrain_float(_angle_ef_target_rad.z, radians(_state._pan_angle_min*0.01f), radians(_state._pan_angle_max*0.01f));
}
} else {
// allow pilot position input to come directly from an RC_Channel // allow pilot position input to come directly from an RC_Channel
if (roll_rc_in && (rc_ch(roll_rc_in))) { rate_input_rad(_angle_ef_target_rad.x,
_angle_ef_target_rad.x = angle_input_rad(rc_ch(roll_rc_in), _state._roll_angle_min, _state._roll_angle_max); roll_ch,
_state._roll_angle_min,
_state._roll_angle_max);
rate_input_rad(_angle_ef_target_rad.y,
tilt_ch,
_state._tilt_angle_min,
_state._tilt_angle_max);
rate_input_rad(_angle_ef_target_rad.z,
pan_ch,
_state._pan_angle_min,
_state._pan_angle_max);
} else {
// allow pilot rate input to come directly from an RC_Channel
if (roll_ch) {
_angle_ef_target_rad.x = angle_input_rad(roll_ch, _state._roll_angle_min, _state._roll_angle_max);
} }
if (tilt_rc_in && (rc_ch(tilt_rc_in))) { if (tilt_ch) {
_angle_ef_target_rad.y = angle_input_rad(rc_ch(tilt_rc_in), _state._tilt_angle_min, _state._tilt_angle_max); _angle_ef_target_rad.y = angle_input_rad(tilt_ch, _state._tilt_angle_min, _state._tilt_angle_max);
} }
if (pan_rc_in && (rc_ch(pan_rc_in))) { if (pan_ch) {
_angle_ef_target_rad.z = angle_input_rad(rc_ch(pan_rc_in), _state._pan_angle_min, _state._pan_angle_max); _angle_ef_target_rad.z = angle_input_rad(pan_ch, _state._pan_angle_min, _state._pan_angle_max);
} }
} }
} }
// returns the angle (degrees*100) that the RC_Channel input is receiving // returns the angle (degrees*100) that the RC_Channel input is receiving
int32_t AP_Mount_Backend::angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max) int32_t AP_Mount_Backend::angle_input(const RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{ {
return (rc->get_reverse() ? -1 : 1) * (rc->get_radio_in() - rc->get_radio_min()) return (rc->get_reverse() ? -1 : 1) * (rc->get_radio_in() - rc->get_radio_min())
* (int32_t)(angle_max - angle_min) / (rc->get_radio_max() - rc->get_radio_min()) + (rc->get_reverse() ? angle_max : angle_min); * (int32_t)(angle_max - angle_min) / (rc->get_radio_max() - rc->get_radio_min()) + (rc->get_reverse() ? angle_max : angle_min);
} }
// returns the angle (radians) that the RC_Channel input is receiving // returns the angle (radians) that the RC_Channel input is receiving
float AP_Mount_Backend::angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max) float AP_Mount_Backend::angle_input_rad(const RC_Channel* rc, int16_t angle_min, int16_t angle_max)
{ {
return radians(angle_input(rc, angle_min, angle_max)*0.01f); return radians(angle_input(rc, angle_min, angle_max)*0.01f);
} }

View File

@ -83,8 +83,8 @@ protected:
void update_targets_from_rc(); void update_targets_from_rc();
// angle_input, angle_input_rad - convert RC input into an earth-frame target angle // angle_input, angle_input_rad - convert RC input into an earth-frame target angle
int32_t angle_input(RC_Channel* rc, int16_t angle_min, int16_t angle_max); int32_t angle_input(const RC_Channel* rc, int16_t angle_min, int16_t angle_max);
float angle_input_rad(RC_Channel* rc, int16_t angle_min, int16_t angle_max); float angle_input_rad(const RC_Channel* rc, int16_t angle_min, int16_t angle_max);
// calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target // calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target
void calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan, bool relative_pan = true); void calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan, bool relative_pan = true);
@ -96,4 +96,8 @@ protected:
AP_Mount::mount_state &_state; // references to the parameters and state for this backend AP_Mount::mount_state &_state; // references to the parameters and state for this backend
uint8_t _instance; // this instance's number uint8_t _instance; // this instance's number
Vector3f _angle_ef_target_rad; // desired earth-frame roll, tilt and vehicle-relative pan angles in radians Vector3f _angle_ef_target_rad; // desired earth-frame roll, tilt and vehicle-relative pan angles in radians
private:
void rate_input_rad(float &out, const RC_Channel *ch, float min, float max) const;
}; };